
1a ESCOLA DE INFORMÁTICA TEÓRICA E MÉTODOS FORMAIS
22–23 de novembro de 2016

Natal – RN

ANAIS

Editora
Sociedade Brasileira de Computação – SBC

Organizadores
Simone André da Costa Cavalheiro

Martin Alejandro Musicante
Leila Ribeiro

Marcel Vinicius Medeiros Oliveira

Realização
Sociedade Brasileira de Computação

Universidade Federal do Rio Grande do Norte
Universidade Federal de Pelotas



CIP – CATALOGAÇÃO NA PUBLICAÇÃO

(Biblioteca do Instituto de Informática da UFRGS, Porto Alegre, RS)

Escola de Informática Teórica e Métodos Formais (2016 nov 22–23:
Natal)

Anais — Natal: SBC / UFPel / UFRN, 2016.

182 p.: il.

ISBN 978-85-7669-357-4

1. Métodos Formais. I. Cavalheiro, Simone André da Costa.
II. Musicante, Martin Alejandro. III. Ribeiro, Leila. IV. Oliveira , Marcel
Vinicius Medeiros. V. Título.

É proibida a reprodução total ou parcial desta obra sem o
consentimento prévio dos autores



ETMF 2016
http://etmf2016.imd.ufrn.br

Comitê de Programa
Aline Maria Santos Andrade (UFBA)
Ana Cristina Vieira de Melo (USP)
Anamaria Martins Moreira (UFRJ)
Arnaldo Vieira Moura (UNICAMP)
Benjamín René Callejas Bedregal (UFRN)
Breno Piva Ribeiro (UFS)
Carlos Alberto Olarte Vega (UFRN)
Christiano Braga (UFF)
Cláudia Nalon (UnB)
Giovanny Fernando Lucero Palma (UFS)
Jayme Szwarcfiter (UFRJ)
Joao Marcos (UFRN)
Juliana Kaizer Vizzotto (UFSM)
Juliano Manabu Iyoda (UFPE)
Leila Ribeiro (UFRGS)
Leila Maciel de Almeida e Silva (UFS)
Luciana Foss (UFPel)
Lucio Mauro Duarte (UFRGS)
Marcel Vinicius Medeiros Oliveira (UFRN)
Marcelo de Almeida Maia (UFU)
Marcio Lopes Cornélio (UFPE)
Martin Alejandro Musicante (UFRN)
Patricia Duarte de Lima Machado (UFCG)
Regivan Hugo Nunes Santiago (UFRN)
Renata Hax Sander Reiser (UFPel)
Rohit Gheyi (UFCG)
Rosiane de Freitas Rodrigues (UFAM)
Sérgio Queiroz de Medeiros (UFRN)
Simone André da Costa Cavalheiro (UFPel)
Tiago Lima Massoni (UFCG)
Umberto Souza da Costa (UFRN)

Revisores Adicionais
Bruno Lopes (UFF)
Camilo Rueda (Pontificia Universidad Javeriana-Cali, Colombia)
Franklin de Lima Marquezino (UFRJ)
João Batista de Souza Neto (doutorando UFRN)
Paulo Eustáquio Duarte Pinto (UERJ)
Ranieri Batista Costa (doutorando PUC-Rio)



ii

Comitê Organizador

Coordenação Geral
Profa. Dra. Simone André da Costa Cavalheiro (UFPel)

Organização Local
Prof. Dr. Martin Alejandro Musicante (UFRN)

Organização do Comitê de Programa
Profa. Dra. Simone André da Costa Cavalheiro (UFPel)

Comissão de Organização
Profa. Dra. Simone André da Costa Cavalheiro (UFPel)
Prof. Dr. Martin Alejandro Musicante (UFRN)
Profa. Dra. Leila Ribeiro (UFRGS)
Prof. Dr. Marcel Vinicius Medeiros Oliveira (UFRN)

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Apresentação

Com imensa satisfação apresentamos a 1a Escola de Informática Teórica e Métodos Formais
(ETMF 2016). A ETMF 2016 é uma promoção conjunta da Universidade Federal de Pelotas (UFPel)
e Universidade Federal do Rio Grande do Norte (UFRN), ocorrendo 22 e 23 de novembro, em Natal,
Rio Grande do Norte. Esta é a primeira edição da escola que tem por objetivo congregar estudantes e
pesquisadores para divulgar e promover aspectos teóricos da Computação. O evento conta com tutoriais,
minicursos e sessões técnicas discutindo temas atuais e relevantes da área.

Os tutoriais e minicursos objetivam qualificar a formação de estudantes e profissionais nas áreas
que compõem a informática teórica. Nas sessões técnicas são apresentados trabalhos concluídos ou em
andamento, relacionados com pesquisas na área. Os artigos são inicialmente revisados em um processo
onde pelo menos dois revisores avaliaram cada artigo, a fim de garantir a qualidade e, ao mesmo tempo,
apresentar aos autores sugestões relevantes para seus trabalhos. Desta forma, agradecemos ao Comitê
de Programa e revisores pelo excelente trabalho na seleção dos textos que compõem este livro. Nesta
Escola, 17 artigos de um total de 22 foram aceitos para publicação e apresentação.

Finalmente, agradecemos aos tutorialistas e ministrantes de minicursos pela aceitação do convite
para fazerem suas apresentações e aos autores pelo interesse em submeter seus trabalhos à escola. Tam-
bém agradecemos o suporte da ClearSy, do Instituto Metrópole Digital (IMD) e da UFRN, os quais
acreditaram no evento e o viabilizaram. Estendemos nossa saudação à SBC, ao DIMAp UFRN, à UFPel
e à UFRGS pelo apoio para a realização deste evento.

Desejamos a todos os participantes que aproveitem bem a estadia em Natal e que tenham uma exce-
lente Escola.

Simone André da Costa Cavalheiro
Martin Alejandro Musicante

Leila Ribeiro
Marcel Vinicius Medeiros Oliveira

Natal, novembro de 2016.

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



iv

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Sumário

Small Normal Form for Propositional Logic: Dynamic Programming Approach
C. Nalon, M. Pimenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Comparação dos Métodos Scan Circular e Flexível na Detecção de Aglomerados Espaciais
de Dengue
J. Melo, A. Melo, R. Moraes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Notes on Topoi and Refinement
C. Braga, E. Haeusler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chu Spaces As a Toy Model For Quantum Mechanics
M. Alcântara, W. Oliveira, T. Silva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Tool Support for Formal Component-based Development
D. Pereira, M. Oliveira, S. Silva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Non-involutive bilattices
P. Maia, U. Rivieccio, A. Jung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Comparação de codificações para solução de puzzles Sudoku via algoritmo DPLL
S. Rabelo, H. Rocha, T. Rocha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Evolving Negative Application Conditions
A. Costa, R. Machado, L. Ribeiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A note on bimachines
R. Souza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A Rewriting Logic Semantics for the Generalized Substitution Language
C. Braga, D. Deharbe, A. Moreira, N. Martí-Oliet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Automatic generation of focused proof systems
E. Pimentel, B. Lellmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Towards Simpler Theorem-Proving of Graph Grammars with Negative Application Conditions
G. Azzi, L. Ribeiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Abordagens Metodológicas para Ensino de Teoria da Computação, Linguagens Formais e
Autômatos
I. Souza, E. Matos, D. Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Calculation and Applications of Concurrent Rules
J. Bezerra, L. Ribeiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

The Smix synchronous multimedia language: Operational semantics and coroutine imple-
mentation
G. Lima, C. Braga, E. Haeusler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



vi

Interpretador e Verificador de Tipos para o Cálculo-λ Quântico com Mônadas e Setas
J. Pires, E. Piveta, J. Vizzotto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Formalization of the Undecidability of the Halting Problem for a Turing Complete Functional
Language
T. Ramos, M. Ayala-Rincón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Small Normal Form for Propositional Logic: Dynamic
Programming Approach

Cláudia Nalon1 and Matheus C. S. C. Pimenta1

Department of Computer Science, University of Brası́lia
C.P. 4466 – CEP:70.910-090 – Brası́lia – DF – Brazil
nalon@unb.br, matheuscscp@gmail.com

Abstract. The satisfiability problem for the classical propositional logic is in-
tractable (unless P = NP). In practice, however, preprocessing might allow for
the simplification of the input formula, thus improving the efficiency of auto-
mated tools for checking satisfiability. Many of the proof methods for proposi-
tional logic employ normal forms. For instance, SAT-based and resolution-based
methods are applied to formulae into Conjunctive Normal Form (CNF), that is,
formulae are conjunctions of clauses. In this paper, we describe a renaming pro-
cedure, based on dynamic programming, for reducing the number of clauses gen-
erated by the transformation of a formula into its CNF. We follow previous ap-
proaches, by avoiding renaming of formulae, if the usual distribution rewriting
rule generates less clauses. Our procedure is correct, but it is not optimal, if we
consider the class of linear formulae (i.e. without equivalences and repeated for-
mulae). However, experimental evaluation shows that our procedure is competi-
tive when formulae are not linear.

1 Introduction

Propositional Logic, PL, despite being one of the simplest logical formalisms around,
is sufficiently expressive to describe several interesting problems in Computer Science:
any problem in NP can be formalised as an instance of the satisfiabiality problem of
PL [3]. Practical applications include, for instance, hardware synthesis, optimisation
and verification [1,11,7], and applications in biological and medical sciences [8]. Prob-
lems in NP are considered intractable, i.e. it is not known if there is a polynomial-time
bounded algorithm that can decide on these problems. In practice, however, preprocess-
ing might improve on the efficiency of existing satisfiability methods for PL.

There is a multitude of computational methods for dealing with the satisfiability
problem for propositional logic. We are particularly interested in resolution-based meth-
ods [16], as the present study is a first step towards the implementation of efficient pre-
processing techniques, which are going to be added to an existing hyperresolution-based
[15] theorem prover for propositional modal logic [10]. For the propositional case, the
resolution method consists of only one inference rule, which is exhaustively applied to
a set of clauses until either the empty clause is generated (in which case the set is unsat-
isfiable) or no new clauses can be generated (in which case the set is satisfiable). Thus,

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



in order to use the resolution method for testing the satisfiability of a propositional for-
mula, the first step is the transformation of such formula into a (equisatisfiable) set of
clauses or, equivalently, into its Conjunctive Normal Form (CNF).

The CNF of a formula can be obtained by applying well-known rewriting rules.
This transformation ensures that the transformed formula is semantically equivalent
to the original one. However, one of the rewriting rules used in this transformation,
namely the distribution rule (from ϕ ∨ (ψ ∧ χ) obtain (ϕ ∨ ψ) ∧ (ϕ ∨ χ)), leads to an
exponential blow-up in the size of the formula. In order to avoid this problem, another
technique known as renaming [17,13], which results in a formula linearly bounded in
the size of the original formula, is used instead. Renaming consists of introducing new
propositional symbols p for each subformula ψ occurring in the original formula ϕ and
adding the definition, p ⇔ ψ, to the formula. Formally, let repb(ϕ,ψ, χ) denote the
replacement of every occurrence of ψ in ϕ by χ. The renaming of ψ in ϕ is given by
repb(ϕ,ψ, p)∧ (p⇔ ψ), where p does not occur in ϕ. In the case where ψ occurs only
with positive polarity, the definition simplifies to the implication p⇒ ψ. The renaming
technique preserves satisfiability: the resulting formula is satisfiable if, and only if, the
original one is satisfiable [17,13].

It is tempting to think that all is sorted out at this point, but that is not quite the
case. The complexity of resolution based-methods, as well as the complexity of other
satisfiability methods for propositional logics (e.g. DPLL [6,5]), is deterministic ex-
ponential in the number of propositional symbols in the input formula. Although the
renaming technique introduces a linear number of such symbols, thus the complex-
ity for the transformed problem is asymptotically the same as that of the original one,
in practice is desirable to avoid the introduction of new symbols and their definitions
whenever the size of the formula does not increase if the usual rewriting rules are ap-
plied. For instance, assume that ϕ = p ∨ (q ∧ r ∧ s) is the input formula. Applying
distribution to ϕ results in (p ∨ q) ∧ (p ∨ r) ∧ (p ∨ s). Using the renaming technique,
the subformula (q ∧ r ∧ s) in the input formula is replaced by t, a new propositional
symbol, and the definition t⇒ (q ∧ r ∧ s) must be added to the formula. The resulting
CNF is (p∨ t)∧ (¬t∨ q)∧ (¬t∨ r)∧ (¬t∨ s), which has more propositional symbols
and is bigger than the formula obtained by the application of distribution.

In [2], a top-down renaming technique which tries to avoid the situation of the pre-
vious example by carefully deciding whether to apply either distribution or renaming
during the transformation of a formula into its CNF, is given. The optimality criteria
is based on the number of clauses, which seems to be a reasonable criteria in practice
[12]. In [2], top-down renamings are shown to be optimal with respect to the num-
ber of clauses for the class of linear formulae (i.e. when a formula does not contain
equivalences and repeated formulae). The greedy algorithm proposed in [2] is shown
to produce a top-down renaming, therefore it is optimal for linear formulae. We follow
this approach by presenting an algorithm based on dynamic programming. We can show
that our approach is not optimal with respect to the proposed criteria, but experimental
evaluation of both techniques show that our approach may produce less clauses when
the input formula is not linear and may be chosen as good heuristic to deal with the
transformation of formulae into CNF for unrestricted classes of formulae.

2 Small Normal Form for Propositional Logic: Dynamic Programming Approach

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The paper is organised as follows. We introduce the syntax and semantics of PL in
Section 2. We briefly review the techniques for obtaining the CNF of a formula in Sec-
tion 3. Section 4 describes our implementation and discuss our results. We summarise
our results in Section 5.

2 Language

We first define the syntax of PL.

Definition 1. Let P = {p, q, . . . , t, . . . , p′, q′, . . .} be a denumerable set of proposi-
tional symbols. The set of well-formed formulae, WFF , is the least set such that every
p ∈ P is in WFF ; if ϕ and ϕi are in WFF , then so are ¬ϕ and ∧ni=1ϕi, for n ∈ N.

The formulae false, true, (ϕ ∨ ψ), (ϕ ⇒ ψ), and (ϕ ⇔ ψ) are introduced as the
usual abbreviations for (ϕ∧¬ϕ), ¬false, ¬(∧ni=1¬ϕi), (¬ϕ∨ψ), and (ϕ⇒ ψ)∧(ψ ⇒
ϕ), respectively (where ϕ,ϕi, ψ ∈WFF , n ∈ N).

A literal is either a propositional symbol or its negation. A clause is a disjunction
of literals. The notions of subfomulae and proper subformulae are defined as usual. We
denote by ϕ @ ϕ′ and ϕ v ϕ′ that ϕ is a subformula and proper subformula of ϕ′,
respectively. The size of a formula is also defined in the usual way:

Definition 2. Let ϕ ∈WFF . The size of ϕ, denoted by |ϕ|, is given as follows. If ϕ ∈ P,
then |ϕ| = 1; if ϕ is of the form ¬ψ, then |ϕ| = 1+ |ψ| ; and if ϕ is of the form (ψ ?χ),
? ∈ {∧,∨,⇒,⇔}, then |ϕ| = 1 + |ψ|+ |χ|.

The following definitions are needed later:

Definition 3. A position is a word over the natural numbers, where ε denotes the empty
word. If π = a1 . . . an is a position and i ∈ N, then i.π denotes ia1 . . . an and π.i
denotes a1 . . . ani. The set of positions of a formula ϕ, pos(ϕ), is defined inductively as
follows:

– if ϕ ∈ P, then pos(ϕ) = {ε};
– if ϕ is of the form ¬ϕ1, ϕ1 ∧ . . .∧ ϕn, ϕ1 ∨ . . .∨ ϕn, ϕ1 ⇒ ϕ2, or ϕ1 ⇔ ϕ2, then
pos(ϕ) = {ε} ∪ (

⋃n
i=1 {i.π | π ∈ pos(ϕi)}).

Example 1. Let ϕ = p ∨ (q ∧ ¬r).

pos(¬r) = {ε} ∪ {1.π | π ∈ pos(r)} = {ε} ∪ {1.π | π ∈ {ε}}{ε, 1}
pos(q ∧ ¬r) = {ε} ∪ {1.π | π ∈ pos(q)} ∪ {2.π | π ∈ pos(¬r)}

= {ε} ∪ {1.π | π ∈ {ε}} ∪ {2.π | π ∈ {ε, 1}} = {ε, 1, 2, 2.1}
pos(ϕ) = {ε} ∪ {1.π | π ∈ pos(p)} ∪ {2.π | π ∈ pos(q ∧ ¬r)}

= {ε} ∪ {1.π | π ∈ {ε}} ∪ {2.π | π ∈ {ε, 1, 2, 2.1}}
= {ε, 1, 2, 2.1, 2.2, 2.2.1}

We denote by ϕ|π the subformula of ϕ which starts at position π. Formally, if π = ε,
then ϕ|π = ϕ; if ϕ is of the form ¬ϕ1, ϕ1 ∧ . . . ∧ ϕn, ϕ1 ∨ . . . ∨ ϕn, ϕ1 ⇒ ϕ2, or
ϕ1 ⇔ ϕ2, and π = i.π′, for i ∈ N and position π′ ∈ pos(ϕi), then ϕ|π = ϕi|π′ . For
instance, in Example 1, where ϕ = p∨ (q ∧¬r), we have that ϕ|ε = ϕ, ϕ|1 = p|ε = p,
ϕ|2 = (q ∧ ¬r)|ε = q ∧ ¬r, ϕ|2.1 = (q ∧ ¬r)|1 = q|ε = q, and so on.

C. Nalon, M. Pimenta 3

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Definition 4. Let ϕ ∈WFF . The polarity of a subformula of ϕ, starting at the position
π, pol(ϕ, π), is given as follows:

1. pol(ϕ, ε) = 1.
2. If ϕ|π is of the form ¬ϕ1, then pol(ϕ, π.1) = −pol(ϕ, π).
3. If ϕ|π is of the form ϕ1 ∧ ... ∧ ϕn, or ϕ1 ∨ ... ∨ ϕn, then pol(ϕ, π.i) = pol(ϕ, π),

for i = 1, ..., n.
4. If ϕ|π is of the form ϕ1 ⇒ ϕ2, then pol(ϕ, π.1) = −pol(ϕ, π) and pol(ϕ, π.2) =

pol(ϕ, π).
5. If ϕ|π is of the form ϕ1 ⇔ ϕ2, then pol(ϕ, π.1) = pol(ϕ, π.2) = 0.

Example 2. If ϕ = p ⇒ (p ⇔ q), then pol(ϕ, ε) = 1, pol(ϕ, 1) = −1, pol(ϕ, 2) = 1,
pol(ϕ, 2.1) = 0, and pol(ϕ, 2.2) = 0.

A valuation is a function ν : WFF −→ {true, false}. A formula ϕ is said to be
satisfiable if there is a valuation ν such that ν(ϕ) = true. A formula ϕ is said to be valid
if ν(ϕ) = true for any valuation ν. A formula is said to be unsatisfiable if there is no
valuation ν such that ν(ϕ) = true. Two formulae, ϕ and ϕ′, are said to be semantically
equivalent if, and only if, for any valuation ν we have that ν(ϕ) = ν(ϕ′). We denote by
ϕ =||= ϕ′ the fact that ϕ and ϕ′ are semantically equivalent.

3 Normal Forms

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses. It is
well known that for every formula ϕ there is a formula ϕ′ such that ϕ′ is in CNF and ϕ
is semantically equivalent to ϕ′. The proof is by induction on the structure of a formula
and uses the following semantic equivalences:

– ϕ⇔ ϕ′ =||= (ϕ⇒ ϕ′) ∧ (ϕ′ ⇒ ϕ) (definition of double implication);
– ϕ⇒ ϕ′ =||= ¬ϕ ∨ ϕ′ (definition of implication);
– ¬(ϕ ∧ ϕ′) =||= ¬ϕ ∨ ¬ϕ′ (De Morgan);
– ¬(ϕ ∨ ϕ′) =||= ¬ϕ ∧ ¬ϕ′ (De Morgan);
– ¬¬ϕ =||= ϕ (double negation elimination);
– ϕ ∨ (ϕ′ ∧ ϕ′′) =||= (ϕ ∨ ϕ′) ∧ (ϕ ∨ ϕ′′) (distribution).

It is easy to see that any procedure for generating the CNF of a formula which is based
on these equivalences might lead to a exponential blow up on the size of the original
formula, because the result of applying the rewriting rule based on distribution adds
twice the size of the formula which is being distributed. In order to avoid the undesirable
growth in the size of the formula, renaming can be applied.

Definition 5. Let ϕ ∈ WFF and ψ @ ϕ. A renaming of ϕ is a subset of proper sub-
formulae of ϕ. Let R be a renaming of ϕ and let P′ denote the set of propositional
symbols occurring in ϕ. The substitution of R in ϕ is a function σ : R −→ P \ P′. If
σ = {(ϕ1, p1), . . . , (ϕn, pn)} is a substitution of R = {ϕ1, ..., ϕn} in ϕ, then:

rep(ϕ, σ) =

{
ϕ if n = 0

rep(repb(ϕ,ϕ1, p1), {(ϕ2, p2), . . . , (ϕn, pn)}) if n > 0

where repb(ϕ,ψ, p) denotes the replacement of every occurrence of ψ in ϕ by p, p 6∈ P ′.

4 Small Normal Form for Propositional Logic: Dynamic Programming Approach

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



ϕ ncl(ϕ) ncl(ϕ)

¬ϕ1 ncl(ϕ1) ncl(ϕ1)

ϕ1 ∧ ... ∧ ϕn
∑n
i=1 ncl(ϕi)

∏n
i=1 ncl(ϕi)

ϕ1 ∨ ... ∨ ϕn
∏n
i=1 ncl(ϕi)

∑n
i=1 ncl(ϕi)

ϕ1 ⇒ ϕ2 ncl(ϕ1)ncl(ϕ2) ncl(ϕ1) + ncl(ϕ2)

ϕ1 ⇔ ϕ2 ncl(ϕ1)ncl(ϕ2) + ncl(ϕ2)ncl(ϕ1) ncl(ϕ1)ncl(ϕ2) + ncl(ϕ1)ncl(ϕ2)

ϕ ∈ P 1 1

Table 1: Number of clauses generated from a formula.

As functions can be seen as restrictions over binary relations, by convenience, we will
often write σ as the set of pairs in R× P, as in the above definition.

Definition 6. Let ϕ ∈ WFF and ψ @ ϕ. Let σ be a substitution of a renaming R of ϕ
and (ψ, p) ∈ σ. The definition of ψ in ϕ with respect to σ is given as follows:

def(ϕ,ψ, σ) =





p⇒ ξ if pol(ϕ, π) = 1, for all π ∈ pos(ϕ) such that ϕ|π = ψ

ξ ⇒ p if pol(ϕ, π) = −1, for all π ∈ pos(ϕ) such that ϕ|π = ψ

p⇔ ξ otherwise

where ξ = rep(ψ, σ \ {(ψ, p)}).

Note that rep(ψ, σ\{(ψ, p)}) denotes that all substitutions defined by σ\{(ψ, p)} have
already been applied to ψ. In what follows, if a particular substitution σ : R −→ P \P ′
is not relevant in some context, we may simply write def(ϕ,ψ,R) for the definition of
ψ in ϕ.

Let σ = {(ϕ1, p1), . . . , (ϕn, pn)} be a substitution of R = {ϕ1, . . . , ϕn} in
ϕ, where R is a renaming of ϕ. The rewriting of ϕ as R(ϕ, σ), where R(ϕ, σ) =
rep(ϕ, σ) ∧ def(ϕ,ϕ1, σ) ∧ . . . ∧ def(ϕ,ϕn, σ), is called transformation by renam-
ing and it is satisfiability preserving [17,13]. As the transformation adds a fixed num-
ber of symbols for each subformula of ϕ, the size of R(ϕ, σ) is linear in the size of
ϕ. As an example, let ϕ = (p ⇔ q) ⇔ (p ⇔ q) and σ = {(p ⇔ q, r)}. Then,
R(ϕ, σ) = (r ⇔ r) ∧ (r ⇔ (p⇔ q)).

Let ϕ ∈ WFF . Let ncl(ϕ) be the number of clauses obtained from the transfor-
mation into CNF by exhaustively applying the rewriting rules based on the semantic
equivalences given in this section, that is, by applying the usual equivalence preserving
algorithm to obtain the CNF of a formula. We denote by ncl(ϕ) the number ncl(¬ϕ).
For any formula ϕ, ncl(ϕ) can be computed according to Table 1 (taken from [2]). Let
σ = {(ϕ1, p1), . . . , (ϕn, pn)} be a substitution ofR = {ϕ1, ..., ϕn} in ϕ. We denote by
ncl(ϕ, σ), or simply by ncl(ϕ,R), the number of clauses obtained for the transformation
into CNF ofR(ϕ, σ).

Denote by SF(ϕ) the multiset of subformulae of ϕ. Giving a renaming R in ϕ, the
benefit of applying the renaming R in ϕ, denoted by B(R,ϕ) is given by ncl(ϕ) −
ncl(R(ϕ,R)), that is, the difference between the number of clauses generated by ϕ and

C. Nalon, M. Pimenta 5

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Form of ψ aϕψi
bϕψi

¬ψ1 bϕψ aϕψ
ψ1 ∧ ... ∧ ψn aϕψ bϕψ

∏
j 6=i ncl(ψj)

ψ1 ∨ ... ∨ ψn aϕψ
∏
j 6=i ncl(ψj) bϕψ

ψ1 ⇒ ψ2, i = 1 bϕψ aϕψncl(ψ2)

ψ1 ⇒ ψ2, i = 2 aϕψncl(ψ1) bϕψ
ψ1 ⇔ ψ2, j = 3− i aϕψncl(ψj) + bϕψncl(ψj) a

ϕ
ψncl(ψj) + bϕψncl(ψj)

ψi = ϕ 1 0

Table 2: Coefficients a and b.

the number of clauses generated by the result of the transformation by renaming of ϕ.
We denote by SUPR(ϕ) the least element ϕ′ in the sequence {ϕ′ ∈ R | ϕ v ϕ′}.

A renaming R is free of ϕ in ψ, with ϕ v ψ, if, for all χ ∈ R, B({χ},R(ψ,R \
{χ})) ≥ 0. In other words, a renaming is free of a particular subformula if the
benefit is positive even when this subformula is not considered for renaming. A re-
naming R, free of ϕ in ψ, is top-down if for all χ v ϕ, if SUP(χ) exists, then
B({χ}, def(ψ,SUPR(χ), R \ SF(χ))) < 0, and else B({χ},R(ψ,R \ SF(χ))) < 0.
If ϕ = ψ, then R is top-down in ψ. This last conditions ensures that no subformula is
renamed if it has a superformula of positive benefit which is not renamed.

4 Implementation and Evaluation

We note that the number of clauses generated from the transformation of a formula
into CNF can be efficiently computed by using the coefficients given in Table 2. The
coefficient aϕψ (resp. bϕψ) corresponds to the overall contribution of ncl(ϕ) in terms of
ncl(ψ) (resp. ncl(ψ)). It can be shown [2] that in order to decide whether a subformula
should be considered for renaming, we only need to check if aϕψ > 0 and bϕψ > 0.

Let {ϕ1, ..., ϕn} be the set of proper subformulae of ϕ and define f(i, j), i, j ≤ n,
as a renaming R ⊆ {ϕ1, . . . , ϕi} that contains at most j subformulae, that is |R| ≤ j.
By definition, we have that f(i, 0) = f(0, j) = ∅, for all i, j. Also, because we are
interested in generating the renaming which will lead to the smallest number of clauses,
we require that the inclusion of a formula in f(i, j) is restricted as follows (for i > 0
and j > 0):

f(i, j) =

{
f(i− 1, j − 1) ∪ {ϕi} if ncl(ϕ, f(i− 1, j − 1) ∪ {ϕi}) < ncl(ϕ, f(i− 1, j))

f(i− 1, j) otherwise

We can show that the definition of f(i, j) does not enjoy an optimal substructure,
that is, if we have that f(i, j) is an optimal renaming among those which contain at most
j subformulae and ψ ∈ f(i, j), then f(i, j) \ {ψ} might not be an optimal renaming
with at most j − 1 subformulae. The counterexample follows. Take

6 Small Normal Form for Propositional Logic: Dynamic Programming Approach

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



ϕ = ((p1 ∧ p2 ∧ p3 ∧ p4) ∨ (q1 ∧ q2)) ∧ ((r1 ∧ r2) ∨ (s1 ∧ ... ∧ s100)),

where ncl(ϕ) = 208. Let R = {p1 ∧ p2 ∧ p3 ∧ p4, ψ = s1 ∧ . . . ∧ s100} is optimal
and |R| ≤ 2. However, ncl(ϕ,R − {ψ}) = 206 > 110 = ncl(φ, {r1 ∧ r2}). That is,
R′ = R−{ψ} = {p1∧p2∧p3∧p4}, ψ /∈ R′ and |R′| ≤ 1, butR′ is not optimal. Thus,
the renamings obtained through the computation of f(n, n) might not be optimal. Still,
the computation of f(n, n) can be used as an heuristic in the search for good renamings.

Algorithm 1 computes f(n, n) which is then stored in dp[n]. It is important to note
that the computation of the renaming is done in a bottom-up fashion, but in our im-
plementation, by construction, the candidates for a renaming in {ϕ1, . . . , ϕn} have the
property that if ϕi @ ϕj , then i > j, if the formula is linear. Although we are con-
sidering a carefully chosen ordering over the subformulae which are candidates for
renaming, this does not ensure that the obtained renaming is a top-down one and, there-
fore, optimum (for linear formulae). Recall, that a top-down renaming requires that a
formula being considered for renaming cannot have a superformula which is not con-
sidered for renaming. In particular, if in our implementation we use the representa-
tion of formulae as Directed Acyclic Graphs (DAGs) instead of trees, in a formula as
(p∧ q∧ r)∧ ((p∧ q∧ r)∨ s), our procedure considers the renaming of (p∧ q∧ r) even
if ((p ∧ q ∧ r) ∨ s) is not considered for renaming.

Algorithm 1 Bottom-up computation of f(n, n).
1: Let dp[j] = ∅ for all j
2: for i = 1 to n do
3: for j = n downto 1 do
4: alt← dp[j − 1] ∪ {ϕi}
5: if ncl(ϕ, alt) < ncl(ϕ, dp[j]) then
6: dp[j]← alt
7: end if
8: end for
9: end for

The attentive reader has certainly noticed that the formula (p∧q∧r)∧((p∧q∧r)∨s)
is not linear. The example is still illustrative as it shows that we will not find a top-
down renaming for every formula. However, in this case, the renaming given by the
procedure in [2] generates more clauses than our procedure: their procedure generates
six clauses (p ∧ q ∧ r ∧ (s ∨ p) ∧ (s ∨ q) ∧ (s ∨ r)) whilst our procedure generates five
(t ∧ (t ∨ s) ∧ (¬t ∨ p) ∧ (¬t ∨ q) ∧ (¬t ∨ r)). In our experimental evaluation, we have
found out that there are few examples in which their procedure generates less clauses
than ours. In particular, when the formula has many occurrences of bi-implications, our
procedure is more efficient.

We have implemented both algorithms and tested over a set of 1200 for-
mulae [14]. The tests were performed on a PC with an Intel R© Xeon R©

C. Nalon, M. Pimenta 7

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Processor E5-2620 v3, 64 GiB RAM, 15 M Cache, running under GNU/Linux (3.19.0-
30-generic x86 64). Virtual memory was limited to 4 GiB and the timeout was set to
1000s. Ten combinations of options were tested: either using DAGS or trees as data
structures for representing formulae; either using simplification or not; either applying
our algorithm or applying the algorithm in [2]. The other two options would allow to
use the usual distribution rules for obtaining the CNF of a formula, with trees, using
either our algorithm or the greedy one. The implementations and the raw data obtained
from our implementations can be found at [4].

We briefly mention the most important results (full analysis can also be found at
[4]). For the combination of options which uses DAGs without simplification, both
algorithms produced outputs in 73% of the cases within the given time limit. In 3%
of these cases, the algorithm proposed in [2] produced less clauses than our approach
(the difference between the number of clauses being at most three). In 8% of those
cases, our approach produced less clauses, but the difference between the number of
clauses reached the peak of 1,572,786 clauses. The families of formulae where the dif-
ferences were most notable were the families SYJ205 (where a formula is a conjunction
of two semantically equivalent implications which are syntactically reordered), SYJ206
(where a formula is a bi-implication of two semantically equivalent bi-implications) and
SYJ212 (which is similar to SYJ206, but double negations are applied to the first lit-
eral), where the number of occurrences of bi-implications is very high. Our results show
that although our approach cannot be proved optimal, in practice it may perform better
for unrestricted formulae.

5 Conclusions and Future Work

We have presented a procedure for transforming a formula into their CNF which com-
bines both the usual rewriting rules and renaming. The idea behind the procedure is to
avoid the renaming of subformulae whenever using this technique is not beneficial. Our
implementation is based on dynamic programming, that is, we try to build a good re-
naming for a formula based on the renamings built for partial subproblems. As shown,
our approach does not produce a top-down renaming, which would give us optimality
for free in the case of linear formulae. In fact, our experimental evaluation has shown
that the implementation of the greedy algorithm given in [2] performs better in some
cases. However, when formulae are not restricted to linear ones, our approach outper-
forms the one in [2] for a larger subset of formulae and the difference between the
number of clauses produced by our implementation is much smaller.

The proof that an optimal substructure for the problem exists is still ongoing work.
We hope to prove that when formulae is restricted to linear formulae, we are able to
construct a good ordering over the candidate subformulae for renaming which mimics
the top-down approach in [2].

We also intend to extend our approach to deal with the transformation of modal
formulae into the normal form given in [9] and add the procedure to the preprocessing
options available in our existing prover [10]. In the case of modal formulae, the depth
of a formula being considered for renaming also needs to be taken into consideration,
making the decision of which technique to apply slightly more difficult.

8 Small Normal Form for Propositional Logic: Dynamic Programming Approach

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Finally, we will investigate other properties related to the minimisation of normal
forms. Although the number of clauses seems to be a good criteria, other measures could
be taken into consideration as, for instance, measures related to the width of clauses (i.e.
the number of literals in a clause).

References

1. R. Bloem, U. Egly, P. Klampfl, R. Könighofer, and F. Lonsing. SAT-based methods for
circuit synthesis. In Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design, pages 31–34. FMCAD Inc, 2014.

2. T. Boy de la Tour. An optimality result for clause form translation. Journal of Symbolic
Computation, 14(4):283–301, 1992.

3. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, pages 151–158, New York, 1971.

4. M. Costa de Sousa Carvalho Pimenta. Um algoritmo baseado em programação dinâmica e
renomeamento para minimização de formas normais. Monografia de Conclusão de Curso,
Bacharelado em Ciência da Computação, Universidade de Brası́lia, 2016. Available at
https://github.com/matheuscscp/TG.

5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
munications of the ACM, 5(7):394–397, 1962.

6. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM (JACM), 7(3):201–215, 1960.

7. A. Gupta, M. K. Ganai, and C. Wang. SAT-based verification methods and applications
in hardware verification. In Formal Methods for Hardware Verification, pages 108–143.
Springer, 2006.

8. E. J. Horvitz. Automated reasoning for biology and medicine. Knowledge Systems Labora-
tory, Section on Medical Informatics, Stanford University, 1992.

9. C. Nalon, U. Hustadt, and C. Dixon. A modal-layered resolution calculus for K. In H. de
Nivelle, editor, Automated Reasoning with Analytic Tableaux and Related Methods - 24th
International Conference, TABLEAUX 2015, Wrocław, Poland, September 21-24, 2015. Pro-
ceedings, volume 9323 of Lecture Notes in Computer Science, pages 185–200. Springer,
2015.

10. C. Nalon, U. Hustadt, and C. Dixon. KSP: A resolution-based prover for multimodal K.
In N. Olivetti and A. Tiwari, editors, Automated Reasoning: 8th International Joint Confer-
ence, IJCAR 2016, Coimbra, Portugal, June 27 – July 2, 2016, Proceedings, pages 406–415.
Springer International Publishing, 2016.

11. R. Nieuwenhuis and A. Oliveras. On SAT modulo theories and optimization problems. In
Theory and Applications of Satisfiability Testing-SAT 2006, pages 156–169. Springer, 2006.

12. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. Handbook of
automated reasoning, 1:335–367, 2001.

13. D. A. Plaisted and S. A. Greenbaum. A Structure-Preserving Clause Form Translation.
Journal of Logic and Computation, 2:293–304, 1986.

14. T. Raths, J. Otten, and C. Kreitz. The ILTP problem library for intuitionistic logic. Journal
of Automated Reasoning, 38(1):261–271, 2007.

15. J. A. Robinson. Automatic Deduction with Hyper-resolution. International Journal of Com-
puter Mathematics, 1:227–234, 1965.

16. J. A. Robinson. A Machine–Oriented Logic Based on the Resolution Principle. J. ACM,
12(1):23–41, Jan. 1965.

C. Nalon, M. Pimenta 9

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



17. G. Tseitin. On the Complexity of Derivations in Propositional Calculus. In J. Siekmann
and G. Wrightson, editors, Automation of Reasoning 2, Classical Papers on Computational
Logic, pages 466–483. Springer-Verlag, 1983.

10 Small Normal Form for Propositional Logic: Dynamic Programming Approach

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Comparação dos Métodos Scan Circular e Flexível na 

Detecção de Aglomerados Espaciais de Dengue  

José C. S. Melo1, Ana C. O. Melo
1
, Ronei M. Moraes

1
, 

 
1 Laboratório de Estatística Aplicada ao Processamento de Imagens e Geoprocessamento 

(LEAPIG), 

Departamento de Estatística, Universidade Federal da Paraíba 

João Pessoa, Paraíba, Brasil 
zka07@hotmail.com, anaclaudiaemelo@gmail.com, ronei@de.ufpb.br  

Abstract. A detecção de aglomerados espaciais é útil para identificar 

localidades com valores diferenciados significativos ou não do ponto de vista 

estatístico em uma região geográfica de interesse. Do ponto de vista 

epidemiológico, essa detecção auxilia a promover políticas públicas 

diferenciadas para o combate à uma doença. Neste artigo objetivou-se comparar 

o desempenho das Estatísticas Scan Circular e Scan Flexível para detecção de 

aglomerados espaciais usando dados reais de dengue na Paraíba.  

Keywords: Métodos de Aglomeração Espacial, Scan Circular, Estatística Scan 

Flexível, Epidemiologia do Dengue. 

1   Introdução 

A Epidemiologia é a ciência que estuda uma doença segundo os seus padrões, causas 

e efeitos. Ela visa prover a base de conhecimento para a promoção e cuidados em 

saúde de acordo com as especificidades de cada localidade e de sua população 

específica [1]. Ela pode ainda auxiliar a tomada de decisão em saúde por gestores de 

modo a prover diferentes políticas de acordo com os dados epidemiológicos de cada 

localidade [2], elegendo diferentes níveis de prioridade para cada localidade de 

acordo com a região geográfica na qual ela está inserida [3]. Problemas como esse, 

remetem ao uso dos métodos de aglomeração espacial, que se utilizam de informações 

georreferenciadas para identificar localidades com valores diferenciados significativos 

ou não do ponto de vista estatístico. 

Vários métodos para detecção de aglomerados espaciais estão disponíveis na 

literatura científica. Alguns são baseados em matrizes de proximidade, como o Índice 

de Moran e a Estatística de Getis & Ord [4]. Outros são baseados em grafos de 

vizinhança, como a Estatística Scan Circular [5] e a Estatística Scan Flexível [6]. Em 

situações práticas, os métodos são baseados em metodologias diferentes e, portanto, 

produzem resultados diferentes. Além disso, não há uma informação de referência 

para se avaliar quais aglomerados são verdadeiros ou não. Assim, são usadas formas 

indiretas de avaliação, baseadas por exemplo nos mapas de risco [7]. 

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



O mosquito Aedes aegypti, que é o vetor transmissor do dengue, foi detectado nas 

principais cidades do Brasil na década de 1970, depois de ter sido erradicado na 

década de 1950 [8]. O combate à doença é mais efetivo se for possível detectar a 

presença do vetor. Do ponto de vista epidemiológico, isso se concretiza a partir da 

detecção de aglomerados espaciais da doença na região geográfica em estudo e 

promovendo políticas públicas direcionadas àquelas sub-regiões.  

Portanto, dado que essa detecção é fundamental para direcionar políticas que 

possam ser efetivas no combate à doença, torna-se necessário usar a melhor 

metodologia disponível para tal.  Tango e Takahashi afirmam que a Estatística Scan 

Flexível, proposta por eles, classifica os conglomerados não circulares de maneira 

mais eficiente que a Estatística Scan Circular proposta por Kulldorff [5]. Desse modo, 

esse artigo visa comparar o desempenho dos métodos Scan Circular e Scan Flexível 

na detecção de aglomerados espaciais de dengue na Paraíba, usando para isso dados 

notificados no ano de 2013 

2   Métodos 

2.1 A Estatística Scan Circular 

Considerando a situação em que, a região geográfica em estudo é dividida em m 

sub-regiões ou geo-objetos (por exemplo, municípios, distritos, bairros, etc). O 

número de casos na sub-região i é denotado pela variável aleatória Ni com valor 

observado ni (𝑖 = 1, … , 𝑚) e  n = n1 + ⋯ + nm. A hipótese H0 afirma que não há 

aglomerados espaciais na sub-região i, os Ni são variáveis independentes de 

Poisson tal que 

H0: E(Ni) = ξi, Ni ~ Poisson(ξi), i = 1, … , m,                      (1) 

onde 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜉) denota uma distribuição de Poisson com média 𝜉, e o ξi é o 

número esperado de casos da sub-região i sob a hipótese nula. Assim calculamos ξi 

como 

ξi = n 
wi

∑ wk
m
k=1

, i = 1, … , m,                                   (2) 

onde wi denota o tamanho da população na sub-região i. Usaremos as coordenadas 

do centro do município para especificar a posição geográfica de cada sub-região i  [9]. 

 

Kulldorff [5] propõe, para a situação descrita acima, a estatística scan circular 

que gera uma janela  Z  em cada centroide das sub-regiões, que é o ponto centro 

geométrico de uma sub-região. Neste caso, uma janela consiste no círculo criado a 

partir do centroide. Para qualquer destes centroides, o raio do círculo varia 

continuamente desde zero até um percentual da população em risco a ser coberta, 

estabelecido pelo usuário. Logo se uma janela contém o centroide de uma sub-

região, o raio do círculo crescerá até englobar, nesta janela, o percentual da 

população estabelecido. Seja Zik(k = 1, … , Ki) denotando a janela composta pelos 

12 Comparação dos Métodos Scan Circular e Flexível na Detecção de Aglomerados Espaciais de Dengue

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



k-1 vizinhos à sub-região i, então todas as janelas a serem verificadas pela 

estatística scan circular estão incluídas no conjunto 

 Z = Z1 = {Zik|1 ≤ i ≤ m, 1 ≤ k ≤ Ki}. 

Com a utilização da notação da janela  Z ∈ Z, a hipótese nula (1) é expressa 

como 

H0 : E(N(Z)) = ξ(Z), para todo  Z ∈ Z,                            (3) 

onde 𝑁() e ξ() denotam, respectivamente, a variável aleatória para o número de 

casos e o número esperado de casos sob H0 dentro da janela especificada. A hipótese 

alternativa H1, afirma que existe pelo menos uma janela  Z ∈ Z , para o qual o risco é 

mais elevado no interior da janela, quando comparado com o exterior da mesma, 

que é, 

H1 : E(N(Z)) > ξ(Z), para algum  Z ∈ Z,                           (4) 

É possível calcular a probabilidade de observar o número de casos observados 

dentro e fora da janela, respectivamente para cada janela de  Z. Kulldorff [5] 

propõe que sob H0, a estatística da razão de verossimilhança é calculada por 

λK = maxZ∈Z λK(Z) =  maxZ∈Z (
n(Z)

ξ(Z)
)

n(Z)

(
n-n(Z)

n-ξ(Z)
)

n-n(Z)

I (
n(Z)

ξ(Z)
>

n-n(Z)

n-ξ(Z)
),      (5) 

onde n() denota o número de casos observados dentro da janela especificada e I() 

é a função indicadora. 

2.2 A Estatística Scan Flexível  

A proposta de Tango e Takahashi [6] é de criar uma janela  de forma flexível em cada 

centroide da sub-região, ligando as sub-regiões vizinhas. O processo, portanto ocorre da 

seguinte forma, para qualquer sub-região i, criamos o conjunto de janelas de forma 

flexível com comprimento k, o que consiste em k sub-regiões conectadas incluindo i e 

vamos mover k de 1 até o comprimento máximo pré-estabelecido K de vizinhos mais 

próximos. Para evitar a detecção de um conjunto de forma improvável, as sub-regiões 

ligadas são restritas aos subconjuntos do conjunto de sub-regiões i e os K vizinhos mais 

próximos à região i. Ao final, como na estatística scan circular, várias janelas diferentes de 

formas arbitraria e sobrepostas umas às outras, são criadas. Seja Zik(j), j = 1, … , jik 

denotando a janela de ordem j, a qual é um conjunto de k sub-regiões conectadas a 

partir da sub-região i, onde jik é a janela j satisfazendo ZiK(j) ⊆ ZiK para  k =

1, … , Ki = K. Então, todas as janelas a serem verificados são incluídas no conjunto 

𝒵 = 𝒵2 = {ℤ𝑖𝑘(𝑗)|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝐾𝑖 , 1 ≤ 𝑗 ≤ 𝑗𝑖𝑘}. 

De forma mais clara, para qualquer sub-região i, a estatística scan circular 

considera K círculos concêntricos que denotamos por Z1, enquanto que a 

estatística scan flexível considera K círculos concêntricos mais todos os conjuntos 

de sub-regiões ligados (incluindo a única região i) cujos centroides estão 

localizados dentro do K-ésimo maior círculo concêntrico que denotamos por . 

J. Melo, A. Melo, R. Moraes 13

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Portanto, o tamanho de 𝒵2 é muito maior do que o de, que é no máximo mK. 

Outro ponto a ser destacado é que, o comprimento máximo de K deve ser inferior 

a 30, pois a carga computacional, devido ao grande número de possíveis 

combinações de janelas tornar-se-ia muito pesada. O valor de K, padrão no 

software FleXScan [6] é definido como 15. 

A janela Z*
 que contem a razão de máxima verossimilhança é definida como a 

MLC, ou seja, o aglomerado mais provável. No entanto, não é interessante que 

Z*continue aumentando o seu raio, quando já englobou em seu círculo os 

aglomerados espaciais de maior risco, apenas para atingir o percentual da 

população pré-estabelecido pelo usuário, pois desta forma, englobará na mesma 

janela também aglomerados espaciais de menor risco [6, 10]. Tango [11] propôs 

que no processo de varredura na janela baseada em λK(Z), exista uma 

possibilidade de que existam duas janelas disjuntas ℤ1 e Z2 e várias regiões 

{i1}, … , {ir}  tal que 

𝜆𝑘({ℤ1, ℤ2, {𝑖1}, … , {𝑖𝑟}}) > max{𝜆𝑘(ℤ1), 𝜆𝑘(ℤ2)},                       (6) 

onde 

    
𝑛(ℤ1)

𝜉(ℤ1)
> 1,

𝑛(ℤ2)

𝜉(ℤ2)
 > 1    𝑒  

𝑛𝑖

𝜉𝑖
 ≤ 1 (𝑖 = 1, … , 𝑟). 

Para evitar fenômenos indesejáveis, Tango [5] propôs a seguinte razão de 

verossimilhança restrita considerando, para cada sub-região, um risco individual: 

 λT(Z) = (
n(Z)

ξ(Z)
)

n(Z)

(
n-n(Z)

n-ξ(Z)
)

n-n(Z)

 I (
n(Z)

ξ(Z)
>

n-n(Z)

n-ξ(Z)
) ∏ I(pi < α1)i∈Z ,         (7) 

onde pi é o p-value uni caudal do teste para 𝐻0 : 𝐸(𝑁𝑖) = 𝜉𝑖 e é dado pelo p-

value médio.  

pi = Pr{Ni ≥ ni + 1|Ni~Poisson(ξi)} +
1

2
Pr{Ni = ni|Ni~Poisson(ξi)},    (8) 

onde a função indicadora I(pi < α1) funciona como critério de seleção para os 

valores  que estão na fronteira e α1 é o nível de significância pré-definido para a 

região individual. A opção de usar o p-value médio é para ajustar o p-valor para 

pequenos   e contar os resultados. Por conseguinte, tal como no caso da estatísti- 

ca scan flexível original, o valor de p do teste scan flexível com base na razão de 

verossimilhança (7) é obtido através do teste da hipótese de Monte Carlo. 

Para analisar os mapas das estatísticas espaciais, toma-se como referência o mapa 

de Risco Relativo (RR). Para a obtenção do mapa coroplético (como é denominado na 

Geografia qualquer mapa colorido) que seja referente ao risco do dengue no estado, se 

faz necessário o cálculo do RR. Este, por sua vez, permitirá a comparação da 

informação de diferentes áreas, padronizando os dados e, com isso, retirando o efeito 

das diferentes populações. Este indicador representa a intensidade da ocorrência de 

um fenômeno com relação a todas as regiões de estudo [3]. A equação do RR de uma 

área é denotada por: 

𝑅𝑅𝑖 =
𝑥𝑖 𝑛𝑖⁄

∑ 𝑥𝑖 ∑ 𝑛𝑖⁄
, (𝑖 = 1, … , 𝑚)                                         (9) 

14 Comparação dos Métodos Scan Circular e Flexível na Detecção de Aglomerados Espaciais de Dengue

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



onde xi é o número de ocorrência do fenômeno em uma região e ni  é a população 

dessa região.  

3   Resultados 

Observando o mapa de RR (Fig. 1), nota-se que nas regiões leste e centro-sul 

possuem risco relativo baixo (inferior a 0,5 vezes o risco do Estado da Paraíba) em 

comparação com as demais áreas do mapa. Dos 223 municípios da Paraíba, 52 

possuem risco elevado (superior ou igual a 1,5 vezes o risco do Estado da Paraíba) e 

cerca de 20 municípios não apresentaram risco. Quando se tem risco igual ou próximo 

a 1 significa que o risco do município é o mesmo que o do Estado. Por conseguinte, 

risco igual a 0 indica que não foi observado risco no município levando em conta o 

risco do Estado. Observa-se no mapa de RR que o maior número de municípios que 

possuem risco alto encontra-se ao oeste, havendo uma pequena concentração na parte 

central do Estado. 

 

Fig. 1. Mapa do Risco Relativo para o dengue no ano de 2013 na Paraíba. 

 

J. Melo, A. Melo, R. Moraes 15

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Analisando o método Scan Flexível (Fig. 2), observa-se que para cada aglomerado 

significativo que é detectado atribui-se uma cor, essa cor diferencia o aglomerado de 

forma que possam ser identificados os municípios que se relacionam. Com respeito à 

epidemiologia do dengue, nota-se a disparidade entre a área litorânea do estado (ao 

leste) e a área que representa o sertão paraibano (ao oeste), no que diz respeito ao 

número de municípios detectados. No litoral foram detectados poucos municípios, 

enquanto a maioria foi detectada no sertão.  

 

Fig. 2. Resultado da Estatística Scan Flexível para o dengue no ano de 2013 na Paraíba. 

 

A Estatística Scan Circular (Fig. 3) apresentou resultado similar a Flexível, no qual 

a parte oeste do estado apresentou o maior número de municípios detectados. Todavia, 

o Scan detectou nove municípios a mais do que o método flexível. Também vale 

ressaltar que a parte centro-sul do estado, em ambos os métodos, não foram 

detectados municípios, o que é compatível com o mapa de RR (Fig. 1). 

16 Comparação dos Métodos Scan Circular e Flexível na Detecção de Aglomerados Espaciais de Dengue

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



 

Fig. 3. Resultado da Estatística Scan Circular para o dengue no ano de 2013 na Paraíba. 

 

Levando-se em conta o mapa RR como referência, a Estatística Scan Flexível 

detectou 63 municípios, sendo 50 deles valores de risco alto, deixando de detectar 2 

municípios nessa situação. Ele também incluiu 3 municípios de risco baixo e 10 risco 

aproximadamente igual ao risco do Estado nesses aglomerados. A Estatística Scan 

Circular detectou 72 municípios, dos quais 52 deles apresentam risco alto. Observa-se 

que a Estatística Scan Circular conseguiu detectar todas as áreas de alto risco, quando 

comparado ao mapa de RR, porém também incluiu 3 municípios de risco baixo (onde 

apenas um deles foi também detectado pela Estatística Scan Flexível) e 17 risco 

aproximadamente igual ao risco do Estado (sendo 5 deles também detectados pela 

Estatística Scan Flexível) nesses aglomerados. 

4   Conclusão 

Levando em consideração o mapa RR como referência, ambos os métodos 

superestimaram os número de municípios com valores de risco alto. A Estatística Scan 

Flexível, entretanto, não detectou dois desses municípios de valores de risco alto, 

J. Melo, A. Melo, R. Moraes 17

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



enquanto a Estatística Scan Circular o fez para todos eles. A Estatística Scan Flexível 

adicionou aos seus aglomerados 13 municípios com valores de risco baixo ou risco 

aproximadamente igual ao risco do Estado. Em contrapartida, a Estatística Scan 

Circular incluiu 20 municípios cujos valores de risco não são altos nos seus 

aglomerados. Portanto, para a epidemiologia do dengue analisada neste trabalho, 

ambas as formas de Estatística Scan superestimaram os aglomerados espaciais 

detectados, mas a Estatística Scan Flexível o fez para um número menor de casos. 

Essas diferenças certamente se devem ao formato geométrico da janela utilizada por 

cada método.  

Como trabalhos futuros, espera-se estender essa comparação para a epidemiologia 

de outras doenças de modo a aprofundar o conhecimento das vantagens e 

desvantagens de cada método em várias situações distintas. 

Referências 

1. Bailey, L.; Vardulaki, K.; Langham, J.; Chandramohan, D. Introduction to 

Epidemiology, 1st ed. London: Open University Press (2007). 

 

2. Sanderson C.; Gruen, R. Analytical Models for Decision Making. London: Open 

University Press (2006). 

 

3. Rothman, K.; Lash, T.; Greenland, S. Modern Epidemiology. Wolters Kluwer 

(2012). 

 

4. Anselin, L. Spatial data analysis with GIS: an introduction to application in the 

social sciences. National Center for Geographic Information end Anlisis. 

University of California - Santa Barbara. August  (1992). 

 

5. Kulldorff M. A spatial scan statistic. Communications in Statistics: Theory and 

Methods; 26:1481--1496 (1997) 

 

6. Tango T, Takahashi K. A Flexibly Shaped Spatial Scan Statistic for Detecting 

Clusters. International Journal of Health Geographics; 4:11. DOI: 10.1186/1476-

072X-4-11 (2005) 

 

7. Moraes, R. M.; Nogueira, J. A. & Sousa, A. C. A. A New Architecture for a Spatio-

Temporal Decision Support System for Epidemiological Purposes, in Proceedings 

of the 11th International FLINS Conference on Decision Making and Soft 

Computing (FLINS2014), Agosto, , Brazil, pp. 17--23 (2014) 

 

8. Braga, I. A.; Valle, D. Aedes Aegypti: Histórico do Controle no Brasil. 

Epidemiologia e Serviços de Saúde, 16(2), 113--118 (2007) 

 

18 Comparação dos Métodos Scan Circular e Flexível na Detecção de Aglomerados Espaciais de Dengue

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



9. Tango, T., & Takahashi, K.. A Flexible Spatial Scan Statistic with a Restricted 

Likelihood Ratio for Detecting Disease Clusters. Statistics in medicine, 31(30), 

4207--4218 (2012)   

10. Tango T. A Test for Spatial Disease Clustering Adjusted for Multiple Testing. 

Statistics in Medicine; 19:191--204. DOI: 10.1002/(SICI)1097-0258(20000130) 

(2000) 

11. Tango T. A Spatial Scan Statistic With a Restricted Likelihood Ratio. Japanese 

Journal of Biometrics; 29:75--95 (2008) 

 

J. Melo, A. Melo, R. Moraes 19

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



20 Comparação dos Métodos Scan Circular e Flexível na Detecção de Aglomerados Espaciais de Dengue

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Notes on Topoi and Refinement

Christiano Braga1 and E. Hermann Haeusler2

1 Universidade Federal Fluminense

cbraga@ic.uff.br
2 Pontifı́cia Universidade Católica do Rio de Janeiro

hermann@inf.puc-rio.br

Abstract. Category Theory is an appropriate framework to establish relations

among concepts that are perhaps in very different spheres of the human knowl-

edge, such as a biological or physical concept and a computation model. It is not

surprising then that it has been thoroughly applied to relate concepts in Computer

Science, in particular specifications or programs. Topoi is a theory that considers

a particular kind of category. In one of its axiomatic definitions, a topos has a ter-

minal object, all pullbacks, an exponential and a subobject classifier. Moreover, a

topos has an internal logic that can be used to express properties local to a given

topos, called Local Set Theory. We propose to explore the internal logic of a topos

to specify and prove refinements among software components.

1 Introduction

We propose a study of software refinement using Topoi [9] and the Local Set Theory,

the logic internal to each topos. (The use of LST in software refinement appears not to

be very exercised in the literature.) We use a monoid actions or M-set to represent an

automaton (which we consider to be the semantics of a software component) and the

fact that the category of M-sets, denoted M-Set, is a topos. We interpret refinement as

the subautomaton relation which in M-Set is interpreted as an injection morphism. LST

allows for the specification of different properties about automata and their relations.

We believe that this manuscript fits nicely with ETMF because, at the same time, it

reports on an ongoing work, a research on refinement, and presents Topoi concepts in a

tutorialistic fashion. The study of Category Theory and Topoi is usually quite dry, based

solely on mathematical examples for each categorical construction. To study them from

automata theory perspective appears to be an appealing approach to Computer Science.

The tutorial part of this paper, in Section 4, is based on [9, 10, 18].

The remainder of this short paper is organized as follows. We continue in Section 2

with some related work. Section 4 recalls basic definitions and results about Category

Theory, Topoi and the M-Set category. Section 5 discusses initial thoughts on how to

represent refinement in M-Set and how the Lean Theorem Prover could be used in the

specification and proof of refinements in M-Set. We conclude this short paper in Sec-

tion 6 with our final remarks and possible continuations of this work.

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



2 Some Related Work

To the best of our knowledge, Topoi, as opposed to general Category Theory, is not much

explored in the context of specification refinement. Kestrel’s Specware [20] approach is

perhaps the only one where refinement is interpreted as a sheaf. However, they do not

explore the internal logic of a topos to formalize refinement.

The literature is quite rich on refinement in general. Here we recall some of it to-

gether with hybrid and behavioral specifications that we believe to be closely connected

subjects.

In a recent paper [5], Castro and Aguirre explore 2-categories and institutions to

formalize refinement of specifications. In [12], Naumann and others explore data re-

finement and lax natural transformations, in the context of semantics of programming

languages. In [14], Barbosa and others discuss about refinement in hybridised institu-

tions. In [17], Orejas and others discuss early work on refinement and the problem of

composition of implementations.

The B method [1] is a stablished approach to component refinement. The semantics

of B machines is a set-theoretic one. The Unifying Theory of Programming [11] is also a

representative approach to software refinement which is formalized as universal inverse

implication. In [6] Cavalcanti presents in her PhD thesis a refinement calculus for the

Z specification language. Sampaio and others described in [19] refinement in Circus, a

language that integrates CSP, Z and the refinement calculus. In a recent paper, Sampaio

and others study refinement of SysML models [13].

On heterogeneous specifications, the Hets [16] approach of Mossakowsky, based on

Diaconescu’s Grothendik institutions [7], is a quite relevant one. In [15] Jose Meseguer

discusses “what is a logic?” also in the context of heterogeneous specifications. Finally,

we refer to Goguen’s behavioral specifications based on Hidden Algebra [8].

3 Subautomaton, Refinement and M-sets

As mentioned in the Introduction, we consider in this paper that a software component

has an automaton semantics. Refinement between components is thus defined model-

theoretically by the subautomaton relation between deterministic finite automata (DFA)

that model each component. This is formalized by Definitions 1 and 2.

Definition 1 (Subautomaton). An automaton H = (Qh, Σ, δh, q0h , Qfh) is a subau-

tomaton of G = (Qg, Σ, δg, q0g , Qfg ) denoted H ⊑ G iff

Qh ⊆ Qg, q0h = q0g , Qfh = (Qfg ∩Qh) and p ∈ δh(q, σ) ⇒ p ∈ δg(q, σ).

Definition 2 (Refinement). Given two components A and C,

C refines A ≡ MA ⊑ MC

where Mi is the deterministic finite automaton that gives semantics to component i.

22 Notes on Topoi and Refinement

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Coffee brewing

Press on/off button A. The associated led blinks while water heats.

The coffee maker is ready for use when the led

stops blinking and remains lit.

Press the button that corresponds Press K for a cup and KK for two cups or a mug.

to the number of cups you want. The coffee maker starts to brew the coffee,

The coffee maker uses a standard amount of water

for each cup. You may interrupt the brewing

process at any moment by pressing

the on/off button A. Once you restart

the coffee maker after interrupting the brewing

process, it will not conclude the interrupted cycle.

Problem

The associated led blinks quickly. Make sure that there is enough water in

the water compartment.

Table 1: Coffee maker behavior

Example 1 (Refinement). The automaton in Figure 1b represents (part of) the behavior

of a real coffee machine whose natural language description is given in Table 1. Its al-

phabet isΣ = {A,K,KK,warmed , brewed , emptied}. They denote actions that either

a user may apply to the coffee maker (such as Aor Kto switch the machine on or off, or

to request a cup of coffee, respectively) or “internal” ones (such as warmed, denoting it

may start making coffee, or emptied, denoting that the water reservoir is empty). The set

of states is

Q = {on, off ,warming , empty , brewing}.

The transition function is graphically represented by the directed graph with distin-

guished notes in Figure 1b.

Let us consider now the automaton in Figure 1a. It simply specifies that a coffee

maker may be switched on, prepare some coffee and be switched off. It is easy to see that

the automaton of Figure 1a is a subautomaton of the one in Figure 1b. Let us call them A

and C, respectively, for abstract and concrete. It is the case that A ⊑ C. The set of states

of A is a subset of the states of C, they both have the same initial state, the final states of

QfA = QfC ∩QA, finally, for the every transition in A for given state and symbol, there

exists a transition inC for the same source and symbol. Note that transition off
A
−→A on ,

in the abstract automaton in Figure 1a, is refined by off (
A
−→C ◦ warmed) on , in the

concrete automaton in Figure 1b.

Definition 3 (M -set). Let M = (A, ∗, e) be a monoid. An M -set is defined to be a pair

(X,λ) where X is a set, λ : A × X → X is an action of M on X , m, p ∈ A and λ

defined as

λe(x) = x,

λm(λp(x)) = λm∗p(x).

C. Braga, E. Haeusler 23

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



offstart warming on

empty brewing

A

A

A

ǫ K

KK

A

brewed

A

ǫ

A

(a) Abstract automaton for a coffee maker

offstart warming on

empty brewing

A

warmed

A

emptied K

KK

A

brewed

A

emptied

A

(b) Refined automaton for a coffee maker

Fig. 1: Automata for a coffee maker

The transition function of C may be represented by Equations 1 to 10 when we

understand the set X = Q and A = Σ, with a similar set for DFA A.

λA(off ) = warming (1)

λwarmed(warming) = on (2)

λemptied(warming) = empty (3)

λA(on) = off (4)

λ
K
(on) = brewing (5)

λ
KK

(on) = brewing (6)

λA(warming) = off (7)

λbrewed(brewing) = on (8)

λemptied(brewing) = empty (9)

λA(empty) = off (10)

In the next section we will see that M-sets and M-sets homomorphisms give rise to a

category that is also a topos. We may then specify properties about automata, such as in

24 Notes on Topoi and Refinement

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



reachability analysis, simulation or refinement, in the internal logic of the topos, called

Local Set Theory.

4 Category Theory and Topoi

4.1 Category theory

Definition 4 (Category). A category C comprises

– a collection of things called C-objects;

– a collection of things called C-arrows;

– operations asigning to each C-arrow f a C–object domf (the domain of f ) and a

C–object codf (the codomain of f ). If a = domf and b = codf it is displayed as

f : a → b or a
f
→ b;

– an operation assigning to each pair 〈g, f〉 of C-arrows with domg = codf , a C–

arrow g ◦ f , the composite of f and g, having domg ◦ f = domf and codg ◦ f =

codg, such that given the configuration a
f
→ b

g
→ c

h
→ d ofC-objects andC-arrows

then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

– an assignment to each C-object b to a C-arrow 1b : b → b called the identity arrow

on b such that for any C-arrows f : a → b and g : b → c 1b ◦ f = f, g ◦ 1b = g.

Definition 5 (Terminal). An object 1 is a terminal object if for every object A in a

category there exists a single morphism between A and 1, denoted A
!
→ 1.

Example 2 (Terminal). In the category of sets Set, terminal objects form a categorical

counterpart of the elements of a set S. Functions from a singleton set to S are in a 1-to-1

correspondence with the elements of S.

Definition 6 (Pullback). A pullback or fiber product of the pair of arrows f : A → C

and g : B → C is an object P and a pair of arrows g′ : P → A and f ′ : P → B such

that f ◦ g′ = g ◦ f ′

P
f ′

//

g′

��

B

g

��
A

f // C

and if i : X → A and j : X → B such that f ◦ i = g ◦ j then there is a unique

k : X → P such that i = g′ ◦ k and j = f ′ ◦ k:

X
j

))
k

''

i

$$

P
f ′

//

g′

��

B

g

��
A

f // C

C. Braga, E. Haeusler 25

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Example 3 (Pullback). Let f : B → C be a function in Set and A ⊆ C. The inverse

image of A under f is written f−1(A) = {b | f(b) ∈ A}. We denote f |S for the

restriction of f to a set S ⊆ B.

f−1(A)
⊆ //

f |
f−1(A)

��

B

f

��
A

⊆
// C

Definition 7 (Exponential). LetC be a category with all binary products and letA and

B be objects of C. An object BA is a exponential object if there is an arrow evalAB :
(BA × A → B) such that for any object C and arrow g : (C × A) → B there is a

unique arrow curry(g) : C → BA making the following diagram commute,

BA ×A
evalAB // B

C ×A

curry(g)×idA

OO
g

66

that is, a unique arrow curry(g) such that

evalAB ◦ (curry(g)× idA) = g.

Note 1 (Exponential). The exponential construction gives a categorical interpretation to

the notion of currying.

Example 4 (Exponential). A cartesian closed category is a category with a terminal

object, all binary products and exponentiation. The category Set is cartesian closed

with BA = Set(A,B).

Definition 8 (Subobject classifier). A sub-object classifier, in a category C, is an ob-

ject Ω, together with a morphism ⊤ : 1 → Ω, such that, for every monomorphism

f : B → A, there is a unique morphism χf : A → Ω, such that, the following diagram

is a pullback.

A // f //
��

!

��

B��

χf

��
1 // ⊤ // Ω

Example 5 (Subobject classifier). The characteristic function of a set.

Example 6 (Subobject classifier of M-Set). To illustrate the workings of the subobject

classifier, suppose k : (X,λ) → (Y, µ) to be the inclusion X →֒ Y . Since k is action

preserving, we have

∀x ∈ X(µ(m,x) = λ(m,x)).

Then, χk : (Y, µ) → Ω of k is χk : Y → LA defined by

χk(y) = {m | µ(m, y) ∈ X}, ∀y ∈ Y.

26 Notes on Topoi and Refinement

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



4.2 Topoi

Definition 9 (Topos). An (elementary) topos is a category C that has a terminal object,

pullbacks, exponentials and subobject classifier.

Example 7 (Topos). The Set category.

Local Set Theory One of the useful aspects of topos theory, from a logical perspective,

is the investigation of the internal logic of a topos by means of a localized language,

called local set theory (LST), which is essentially a high-order typed language. This is

done by taking any topos as a model of a theory in the language of LST. The interpreta-

tion of such a theory in a particular topos provide us with a convenient way of treating

the objects of the given topos as set-like entities and the morphisms as function-like

relations.

Subobject classifiers allow for the definition of equality, membership relation, and

existential and universal quantifiers. In other words, for any topos, subobject classifiers

form the semantics of local set theory. As a morphism from A × A into Ω, =A is a

predicate. LST has a propositional meaning for ∈A, =A, ∀A and ∃A which are typed (or

localized) counterparts for ∈, =, ∀ and ∃.

Definition 10 (Logical connectives).

0
! //

!

��

1

χ!=⊥

��
1

⊤
// Ω

1
⊥ //

!

��

Ω

χ⊥=¬

��
1

⊤
// Ω

1
〈⊤,⊤〉 //

!

��

Ω ×Ω

χ〈⊤,⊤〉=∧

��
1

⊤
// Ω

Ω +Ω
[〈IdΩ ,⊤〉,〈IdΩ ,⊤〉]//

!

��

Ω ×Ω

χ[〈IdΩ,⊤〉,〈IdΩ,⊤〉]=∨

��
1

⊤
// Ω

Definition 11 (Local identity). Consider an object A in a topos T. Let δ : A → A×A

be the diagonal morphism defined as 〈IdA, IdA〉. Local equality in A, denoted =A, is

defined by the following subobject classifier pullback, where =A os the characteristic

morphism of δ.

A
δA //

!

��

A×A

=A

��
1

⊤
// Ω

Definition 12 (Local membership). Consider a topos T and an object A. Let evalA :
A×ΩA → Ω be the evaluation morphism provided by the exponential object ΩA. The

C. Braga, E. Haeusler 27

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



following instance of the subobject classifier pullback defines ∈A.

∈A
inc //

!

��

A×ΩA

evalA

��
1

⊤
// Ω

Definition 13 (Local ∀). R(xB , yA) is represented by r : R → B ×A.

∀xA.R
∀A.r //

!

��

B

χ̂rA

��
1

!̂ // ΩA

Definition 14 (Local ∃). ∃yA.R(xB , yA) is ∃A ◦ χ̂r.

∈A
inc //

!

��

A×ΩA π2 // ΩA

χπ2◦inc=∃A

��
1

! // Ω

To conclude this section, we say that a category is locally small wheneverHom(A,B)
is a set, for any A and B in the category.

Theorem 1 (Fundamental theorem of Topoi). Let C be a locally small category.

Set
C is a topos.

The category Set
C, when C is a pre-order, is naturally interpreted as sets varying

according C. The pre-order works as a temporal structure over each set evolves. When

C is more than a pre-order category, sometimes it is possible to see a kind of topology

on any object A induced by the morphism with co-domain A. In this case, we have a

temporal structure induced by this topology. Anyway, in some cases, SetC is naturally

equivalent to a category of dynamic systems. Since discrete dynamical systems can be

seen as a semantics for computing processes, the use of the above functorial category in

providing examples for non-standard model of computing is justified.

4.3 M-Set is a topos

Definition 15 (Left ideal of M ). A set B ⊆ A is a left ideal of M if it is closed under

left-multiplication, that is, if m ∗ b ∈ B whenever b ∈ B and m ∈ A.

Theorem 2 (M-Set). M-Set is a topos where each object is a M -set . A morphism

f : (X,λ) → (Y, µ) is an action-preserving (or equivariant) function f : X → Y such

that, for all m ∈ A and x ∈ X ,

f(λ(m,x)) = µ(m, f(x)).

28 Notes on Topoi and Refinement

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Proof. M-Set is a category. Arrow composition is functional composition. The termi-

nal object 1 = ({0}, λ0) such that ∀m(λ0(m, 0) = 0). The product of (X,λ) and (Y, µ)
is (X × Y, δ) where δm = λm × µm : X × Y → X × Y. The subobject classifier of

M-Set is Ω = (LA, ω) where LA is the set of left ideals in M and ω : A× LA → LA

such that ω(m,B) = {n | n ∗ m ∈ B}. The morphism ⊤ : 1 → Ω is the function

⊤ : {0} → LA with ⊤(0) = A. (Function ⊤ selects the largest left ideal A of M .)

Given (X,λ) and (Y, µ) we define the exponential

(Y, µ)(X,λ) = (E, σ)

where E is the set of equivariant maps f to the function g = σm(f) : M × X → Y

given by g(n, x) = f(m ∗n, x). The evaluation arrow eval : (E, σ)× (X,λ) → (Y, µ)
has eval(f, x) = f(e, x). Then given an arrow f : (X,λ) × (Y, µ) → (Z, ν), the

exponential adjoint f̂ : (X,λ) → (Z, ν)(Y,µ) takes x ∈ X to the equivariant map

f̂x : M × Y → Z having f̂x(m, y) = f(λm(x), y). ⊓⊔

5 Categorifying Refinement

5.1 Refinements are monomorphisms

The process of categorification gives categorial interpretations to set-theoretic concepts.

Membership x ∈ A, for instance, is categorified as x : 1 → A where x is identified with

the function •x from {•} in A such that •x(•) = x. The formula ∀x1, x2 ∈ A(f(x1) =
f(x2) ⇒ x1 = x2), that expresses that function f : A → B is injective, in Set, is

categorified as

∀x1, x2 : 1 → A(f ◦ x1 = f ◦ x2 ⇒ x1 = x2). (11)

It should be noted that the equality x1 = x2 is an equality between morphisms. In Local

Set Theory, it could be expressed as

Mono(fBA

) ⇔ ∀hAC

∀gA
C

[((f ◦ h) =BC (f ◦ g)) ⇒ (h =AC g)], (12)

where Mono stands for monomorphism, a generalization of injective morphisms in Set,

fBA

is a variable for morphisms A → B. Variables h and g range over morphisms

C → A. Note that equality is also properly typed.

To categorify refinement, understood as subautomata relation (see Definition 2), first

we need to recall that every automaton is an M-set (see Section 3). Now, every M-set is

an object in the category M-Set whose arrows are M-set homomorphisms. Therefore,

the subautomaton relation is represented categorically as a monomorphism (injective

morphism in Set) between two M-sets.

In Example 1, the fact that DFA A is a subautomaton of C is captured by an injective

function f that includes de set of states of A in C, identifies the initial state, includes de

set of final states of A in C and the transition relation. Function f is a monomorphim in

M-Set.

C. Braga, E. Haeusler 29

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



5.2 Lean and Topoi

As we have seen in Section 4.2, every topos has an internal logic or its local set theory.

However, intuitionistic logic is a common denominator to them all [9, Ch. 8]. Per Martin-

Löf devised a calculus for Intuitionistic Type Theory (ITT) that recently received an

incarnation in the Lean [2] proof assistant. Listing 1 shows the Lean specification for the

exponential object of a topos. Essentially, every structure represents a “data type”: in our

case, monoids, M-sets, categories and topoi. Structures may be parameterized and have

many properties. For instance, the elementary topos structure, following Definition 9,

has an exponential object BA, given objects A,B and C, if there exists morphisms

evalAB : BA ×A → B (represented by ev in the specification), g : C ×A → B, there

exists a unique morphism curry g : C → BA such that evalAB◦(curry(g)×idA) = g.

Variables such as p ba a denote the product of objects ba and a and prv p c a denotes

a proof that there exists the product C × A. Constructor hom builds a homomorphism

from two objects.

1 structure elementary topos (ob : Type) extends category ob :=

2 . . .
3 (exp : ∀ {a b c ba p ba a p c a : ob}(g : hom p c a b)(curry g : hom c ba)(ev : hom p ba a b)

4 (prv p ba a : ob prd ba a p ba a) (prv p c a : ob prd c a p c a),

5 (comp ev (hom prd (curry g) (ID a) prv p c a prv p ba a)) = g)

6 . . .

Listing 1: Lean specification for exponential object

On a technical note, one of the reasons for choosing Lean over Coq [21], a very

mature proof assistant for ITT, is that Lean implements rules

r ∈ I(A, a, b)

a = b ∈ A
I -intro

a = b ∈ A

c ∈ I(A, a, b)
I -elim

c ∈ I(A, a, b)

c = r ∈ I(A, a, b)
I -eq

from Martin-Löf’s type theory that allows us for to go beyond the propositional treatment

of equality, that is, reasoning with reflexivity, transitivity, and symmetry, by treating

equality as a type. (The type I in the rules above.) In programming jargon, it gives a

formal infrastructure to overload equality and reason about it, so “we can not only have

the cake but it too.” This feature appears to be quite important while defining the type for

morphisms in a category as in Category Theory we can not talk about object equality,

only about morphism equality.

6 Final Remarks

Category Theory is an appropriate framework to establish relations among concepts

that are perhaps in very different spheres of human knowledge. Topoi is a theory that

considers a particular kind of category. In one of its axiomatic definitions, a topos has

a terminal object, all pullbacks, an exponential and a subobject classifer. Moreover, a

topos has an internal logic that can be used to express properties local to it, called Local

Set Theory.

Even though Topoi has been used to express relations among specifications, it ap-

pears that its internal logic has not. This is the scope of this work: we propose to per-

form such a study and evolve it into other relations among specifications, assuming

30 Notes on Topoi and Refinement

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



an automata semantics for them. Such a topos would be a unifying model for differ-

ent automata-based models, such as those for software components like constraint au-

tomata [3] or input/output automata [4].

References

1. J.-R. Abrial. The B-book - assigning programs to meanings. Cambridge University Press,

2005.

2. J. Avigad, L. de Moura, and S. Kong. Theorem Proving in Lean. Microsoft Research, https:

//leanprover.github.io/tutorial/tutorial.pdf.

3. C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component connectors in Reo by

constraint automata. Science of Computer Programming, 61(2):75–113, 2006.

4. S. S. Bauer, R. Hennicker, and M. Wirsing. Interface theories for concurrency and data.

Theoretical Computer Science, 412:3101–3121, June 2011.

5. P. F. Castro and N. Aguirre. Algebraic foundations for specification refinements. In L. Ribeiro

and T. Lecomte, editors, Proceedings of Brazilian Sympposium on Formal Methods (SBMF

2016), (To appear.), 2016.

6. A. Cavalcanti and J. Woodcock. ZRC – a refinement calculus for Z. Formal Aspects of

Computing, 10(3):267–289, 1998.

7. R. Diaconescu. Grothendieck Institutions, pages 253–273. Birkhäuser, Basel, 2008.

8. J. Goguen and G. Malcom. A hidden agenda. Theoretical Computer Science, 245(1):55–101,

August 2000.

9. R. Goldblatt. Topoi — The Categorical Analysis of Logic. Dover Publications, Inc., 2006.

10. E. H. Haeusler, L. C. Pereira, and P. A. Veloso. Categorification, set theory and finiteness (in

portuguese). Notae Philosophicae Scientiae Formalis, 2(1):1–21, may 2013.

11. C. A. R. Hoare and J. He. Unified Theories of Programming. Prentice Hall College division,

January 1998.

12. M. Johnson, D. Naumann, and J. Power. Category theoretic models of data refinement. Elec-

tronic Notes in Theoretical Computer Science, 225:21–38, January 2009.

13. L. Lima, A. Miyazawa, A. Cavalcanti, M. Cornélio, J. Iyoda, A. Sampaio, R. Hains,

A. Larkham, and V. Lewis. An integrated semantics for reasoning about SysML design mod-

els using refinement. Software & Systems Modeling, pages 1–28, 2015.

14. A. Madeira, M. A. Martins, L. S. Barbosa, and R. Hennicker. Refinement in hybridised

institutions. Formal Aspects of Computing, 27(2):375–395, 2015.

15. J. Meseguer. General logics. In H.-D. Ebbinghaus, J. Fernandez-Prida, M. Garrido, D. Las-

car, and M. R. Artalejo, editors, Logic Colloquium’87Proceedings of the Colloquium held in

Granada, volume 129 of Studies in Logic and the Foundations of Mathematics, pages 275 –

329. Elsevier, 1989.

16. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set, Hets, pages 519–

522. Springer, Berlin, Heidelberg, 2007.

17. F. Orejas, M. Navarro, and A. Sánchez. Algebraic implementation of abstract data types: a

survey of concepts and new compositionality results. Mathematical Structures in Computer

Science, 6(1):33–67, 03 2009.

18. B. C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.

19. A. Sampaio, J. Woodcock, and A. Cavalcanti. Refinement in Circus, pages 451–470. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2002.

20. Y. V. Srinivas and R. Jüllig. Specware: Formal support for composing software, pages 399–

422. Springer, Berlin, Heidelberg, 1995.

21. The Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA, https:

//coq.inria.fr/distrib/V8.5pl2/files/Reference-Manual.pdf, July 2016.

C. Braga, E. Haeusler 31

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



32 Notes on Topoi and Refinement

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Chu Spaces As a Toy Model For Quantum
Mechanics

Maigan S. da S. Alcântara1, Wilson R. de Oliveira2, and Thiago D. O. Silva3

1 Centro de Informática, Universidade Federal de Pernambuco, Av. Jornalista Ańıbal
Fernandes, s/n, Cidade Universitária, 50.740-560 - Recife - PE,

mssa@cin.ufpe.br
2 Departamento de Estat́ıstica e Informática, Universidade Federal Rural de

Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife/PE,
wilson.rosa@ufrpe.br

3 Departamento de Matemática, Universidade Federal Rural de Pernambuco, Rua
Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900, Recife/PE,

thiago.dk@gmail.com

Abstract. We investigate the categorical properties of Chu spaces with
the purpose of using these spaces as a model for categorical quantum
mechanics. Despite the enormous success of the Hilbert space model
approach to Quantum Mechanics, alternative finite models, dubbed toy
models, has helped to discriminate what are the really important features
of quantum mechanics. We assume the reader familiarity with categories
and give a very brief introduction to Chu spaces. Then, we show that
the Chu spaces category is a symmetric monoidal, cartesian and compact
category. We show that there are dagger structures for some particular
subcategories.

Keywords: Category Theory, Chu Spaces, Quantum Mechanics

1 Introduction

Category Theory and Quantum Mechanics may seem at first as two completely
different scientific fields. But rather not only they have much in common as they
are mutually enriched from views and approaches of one over another [4].

At first the theory of categories can be seen as a generalisation of the algebra
of functions [7]. In this context, clearly, the main operation on functions is com-
position. Actually, a category is an abstract structure made of objects and arrows
between the objects with a fundamental property namely the compositionality
of arrows [4].

Category Theory is a relatively recent theory, created by S. Eilenberg and
S. Mac Lane in 1945 [11], as a result of their work in algebraic topology. Since
then it has influenced many areas as a revolutionary way of understanding and
approach the subject field. Currently the interplay between Category Theory,
Quantum Mechanics, and Computer Science constitutes extremely active areas
of research.

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



There are numerous proposal in the literature that quantum mechanics can
be expressed using categories instead of the traditional Hilbert space [1]. Specifi-
cally, the dagger symmetric monoidal categories (†−SMC) with base structures,
which can describe many characteristics of Quantum Mechanics [5].

Coecke and Edwards [8] explore some concrete examples of symmetric monoidal
categories to model important features of quantum mechanics, such as quantum
teleportation protocol [8].These authors show two important facts: that the ’toy’
model presented in Spekkens is an interesting instance of a categorical and quan-
tum axiomatic; and that in FRel - category of finite sets and relations with the
cartesian product as a tensor - the set of two elements {0, 1} comes equipped
with two complementary observable.

In this context, our special attention is given to categories that have finite
spaces and their particular cases as the Chu spaces. We direct the study to
∗−autonomous categories.

Chu space is a special case of a construction that originally appeared as an
appendix in the book [2].

Interest in ∗−autonomous categories comes with the advent of Linear Logic
since these categories provide models for Multiplicative Linear Logic (and with
the additional assumptions for all Linear Logics) [16].

Chu construction applied to the category Set, of sets and functions, was
introduced independently (with the name of “games”) by [14] and subsequently
(under the name Chu spaces) was subjected to a series of papers produced by
Pratt and his collaborators [16].

Application Chu spaces have been proposed in a number of areas, including
the concurrency, game theory, fuzzy systems and mathematical studies on the
Chu construction (in categorical terms) [3].Moreover, it has an effective structure
of comonoid [17] to treat base structures.

In this sense, we will explore the category of Chu spaces, its relevance and
potential uses in quantum mechanics. Finally, we investigate the potentials in
the category ChuK .

2 Chu Space

Chu spaces provides a simple, universal and well-structured representation to
a range of objects in mathematics. They are simple because of being merely a
rectangular matrix whose rows represent points, their columns represent dual
states, whose entries are drawn from a set K.

Some notions that we will see in this section are based on the course notes
given by Vaughan Pratt [16] and the Michael Barr’s book [2].

A Chu space A = (A, r,X) over a set K, consists of a set A of points, a set X
of states, and a function r : A×X → K. Note that the function r : A×X → K
can be regarded as a matrix with rows on A, columns on X and values on K,
particularly when the sets involved are finite, as it is in our case.

34 Chu Spaces As a Toy Model For Quantum Mechanics

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



We call a Chu space normal when each column is a function from A to K,
i.e., X ⊆ KA. We use the abbreviate notation (A,X) with r(a, x) taken to be
x(a), each x ∈ X now being a function x : A → K [16].

The category ChuK has as objects Chu spaces (A, r,X) over K, and as
morphisms

(f, g) : (A, r,X) → (B, s, Y )

where the pair of functions

f : A → B e g : Y → X

is such that for every a ∈ A and y ∈ Y, we have:

s(f(a), y) = r(a, g(y)).

This equation is a primitive form of adjunction, and we call it as the adjoint
condition. The pair (f, g) will be called adjoint pair. Given the adjoint pairs
(f, g) : (A, r,X) → (B, s, Y ) and (f ′, g′) : (B, s, Y ) → (C, t, Z) the composite is
given by

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g ◦ g′).
This composite is itself an adjunct pair because for all a ∈ A and z ∈ Z we

have:
t(f ′ ◦ f(a), z) = s(f(a), g′(z)) = r(a, g ◦ g′(z))

So that the following diagram commutes:

A× Y
f×idY

idA×g

B × Y

s

A×X
r

K

(1)

The associativity of the composition is inherited from the composition in
Set.

While the pair (1A, 1X) of maps identities, respectively A and X, is the iden-
tity of the morphism in (A, r,X), i. e., idA : (idA, idX) : (A, r,X) → (A, r,X).
Their isomorphisms are those morphisms (f, g) in respect to which f and g are
both bijections.

There is a series of operations over Chu spaces of practical interest. Opera-
tions that come from linear logic [12], an approach carried out by Y. Lafont [14],
and process algebras.

The dual A⊥ of a Chu space A = (A, r,X) corresponds to A⊥ = (X, r̆, A),
where r̆(x, a) = r(a, x).

The tensor product A ⊗ B of two Chu spaces A = (A, r,X) and B =
(B, s, Y ) is given by (A × B, t,F) where F ⊂ Y A × XB is the set of all pairs
(f, g) of functions f : A → Y and g : B → X for which s(b, f(a)) = r(a, g(b))

M. Alcântara, W. Oliveira, T. Silva 35

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



for all a ∈ A and b ∈ B, and t : (A× B)× F → K is given by t((a, b), (f, g)) =
s(b, f(a))(= r(a, g(b))).

Associated with the tensor product is the tensor unit 1, namely the space
(∗, r,K), corresponding to the space with one point and |K| states, where r(∗, k) =
k to k ∈ K.

However, the notions tensor product and dual seen above are given only
to Chu spaces objects. To make it a bi-functor over ChuK we must include
morphisms.

We call f : A → B continuous when it has an adjoint from B⊥ to A⊥, i.e.
when there exists a function g : Y → X making (f, g) a Chu morphism.

Given (f, g) : A → B, let (f, g)⊥ : B⊥ → A⊥ defined by (g, f). This suggests
the notation f⊥ = g.

Given the functions f : A → A′ and g : B → B′, we define f ⊗ g : A⊗ B →
A′⊗B′ is the function (f⊗g)(a, b) = (f(a), g(b)). When f and g are continuous,
f ⊗ g is also continuous, indeed (f ⊗ g)⊥ from G to F (where G and F consist
respectively of pairs (h′ : A′ → Y ′, k′ : B′ → X ′) and (h : A → Y, k : B → X))
sends h′ : A′ → Y ′ to g⊥◦h′ ◦f : A → Y and k′ : B′ → X ′ to f⊥◦k′ ◦g : B → X.

Proposition 1. [16] The tensor is commutative and associative, up to a natural
isomorphism: A⊗B ∼= B⊗A and A⊗ (B⊗ C) ∼= (A⊗B)⊗ C.

Proposition 2. [9] The tensor unit behaves as expected, i.e. A⊗1 ∼= A ∼= 1⊗A

through the obvious pairing of isomorphism (a, ∗) with a.

3 Categorical quantum mechanics

The definitions in this section are all based on [7].
A monoidal category is a category C equipped with a bifunctor ⊗ : C×C →

C, a unit object I, such that for all objects A,B and morphisms f, g, h, k, of the
appropriate type, we have

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) and 1A ⊗ 1B = 1A⊗B (2)

and three natural isomorphisms

αA,B,C : A⊗ (B ⊗ C)
∼✲ (A⊗B)⊗ C ;

λA : I ⊗A
∼✲ A;

ρA : A⊗ I
∼✲ A,

and for all A,B,C,D,A′, B′, C ′ and f, g, h the appropriate type, the following
diagrams commute

A⊗ (B ⊗ C)

f⊗(g⊗h)

αA,B,C

(A⊗B)⊗ C

(f⊗g)⊗h

A′ ⊗ (B′ ⊗ C ′)
αA′,B′,C′ (A′ ⊗B′)⊗ C ′

(3)

36 Chu Spaces As a Toy Model For Quantum Mechanics

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



A
λA

f

I ⊗A

1I⊗f

A
ρA

f

A⊗ I

f⊗1I

B
λB

I ⊗B B
ρB

B ⊗ I

(4)

The condition of associativity, is known as the Mac Lane’s pentagon [15]
Finally, consistency condition.

A⊗B
1A⊗λB

ρA⊗1B

A⊗ (I ⊗B)

αA,I,B

(A⊗ I)⊗B

(5)

λI = ρI . (6)

A monoidal category is moreover symmetric if there is a fourth natural
isomorphism

σ = {A⊗B
σA,B✲ B ⊗A | A,B ∈ C} ,

which also obeys several consistency conditions [4]. The symmetric monoidal
category form the basic structure for classical and quantum systems.

In categorical quantum mechanics literature we have the notion that gener-
alizes the adjoint operator between Hilbert spaces, in which we get the structure
of the dagger monoidal categories which is a monoidal category C equipped with
a contravariant functor involution † : Cop→C , which is the identity on objects,
satisfying the equation:

(f ⊗ g)† = f† ⊗ g† . (7)

In detail, this means that it associates each morphism f : A → B in C his
adjoint f† : B → A such that for all f : A → B and g : B → C, satisfy some
properties.

A dagger symmetric monoidal categories (†−SMC) is a symmetric monoidal
category which also has a dagger structure.

The category FdHilb of finite dimensional Hilbert spaces and linear maps
[8] has a dagger structure: given a linear map f : A → B, the map f† : B → A
is its Hermitian adjoint in the usual sense. FdHilb is also a dagger symmetric
monoidal category where the tensor is the usual tensor product of Hilbert spaces
and the tensor unit is the scalar field C.

4 Structures in the category of Chu spaces

We now investigate further structures of ChuK related to categorical quantum
mechanics.

M. Alcântara, W. Oliveira, T. Silva 37

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Theorem 3. ChuK with the tensor product ⊗, is a symmetric monoidal cate-
gory.

Proof. We have seen that the tensor product unit is the Chu space with one
point and |K| states, denoted by 1.

Consider the Chu spaces A = (A, r,X),B = (B, s, Y ) and C = (C, t, Z).
By functoriality of ⊗ seen in section 2, we have:

(h⊗k)◦(f⊗g)(a, b) = (h⊗k)◦(f(a), g(b)) = (h◦f(a), k◦g(b)) = (h◦f)⊗(k◦g)(a, b)

where f : A → A′, g : B → B′, h : A′ → A′′ and k : B′ → B′′.
The three natural isomorphisms are given as follows:

– For natural isomorphism α, seen the proposition 1 the tensor is associative,
so: αA,B,C : A⊗ (B⊗ C) → (A⊗B)⊗ C : αA,B,C : (a, (b, c)) = ((a, b), c);
The proposition 2, show that the isomorphism λ and ρ are well defined in
Chu. Hence,

– λA : A → 1⊗A :: λA(a) = (∗, a);
– ρA : A → A⊗ 1 :: ρA(a) = (a, ∗).

Hence satisfying Eqs. 3 and 4, the same goes for the Mac Lane’s pentagon.
We omit the such diagrams for objectivity effect. The condition 5 is given by:

A⊗B
1A⊗λB

ρA⊗1B

A⊗ (1⊗B)

αA,1,B

(A⊗ 1)⊗B

(8)

This condition follows Propositions 1 and 2. Furthermore, we have:

σI,A ◦ λA(a) = σI,A(∗, a) = (a, ∗) = ρA(a).

– For symmetry, we saw in the proposition 1 the tensor is commutative, and
so the natural isomorphism σ to the Chu space is :
σA,B :: A⊗B → B⊗A :: σA,B(a, b) = (b, a).

So that the following diagrams commute

A⊗ (B⊗ C)
αA,B,C

1A⊗σB,C

(A⊗B)⊗ C
σ(A⊗B),C

C⊗ (A⊗B)

α

A⊗ (C⊗B)
αA,B,C

(A⊗ C)⊗B
σA,C⊗1B

(C⊗A)⊗B

(9)

This condition immediately follows from Proposition 1 where show that the
tensor is commutative and associative!

Thus, ChuK is a symmetric monoidal category. ⊓⊔

38 Chu Spaces As a Toy Model For Quantum Mechanics

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



A category is ∗− autonomous is a symmetric monoidal category equipped
with a dualizing object ⊥.

Note that ChuK is a category ∗− autonomous with its dual Chu space A⊥

as the dual object of the space A and the dualizing object defined as ⊥ = 1⊥.
Moreover, ChuK is a closed compact category with respect to the tensor

product and ChuK is a Cartesian category with respect to the direct sum ⊕ [9].

5 Discussion and other results

Recently, many studies in categorical quantum mechanics has given evidence of
the importance of the dagger functor (†) for expressing the essential structures of
quantum mechanics in a symmetric monoidal category (for example basis struc-
tures, entanglement, etc). And so we arrive at categories with more sophisticated
structure, such as dagger symmetric monoidal categories †− SMC).

Thus is natural to investigate weather the category ChuK admits such func-
tor and if it is a †− SMC. We shall see that ChuK has dagger structure in at
least two cases: 1. when the morphisms are bijections (i.e. it is a subgroupoid of
ChuK); and 2. When the points set A and states setX have the same cardinality.

Note that to define a dagger functor which is identity on objects, the mor-
phisms have to satisfy the following property:

Let A = (A, r,X) and B = (B, s, Y ) Chu spaces. Given the morphism

f = (f1, f2) : A → B

with f1 : A → B and f2 : Y → X such that s(f1(a), y) = r(a, f2(y)). The adjoint
morfismo

f† = (f†
1 , f

†
2 ) : B → A

where f†
1 : B → A e f†

2 : X → Y must satisfy s(b, f†
2 (x)) = r(f†

1 (b), x).
Remark that this property is related to the functoriality of the candidate to

† and uses continuity.
Thus, in search of structure of the dagger functor to ChuK , we impose some

restrictions and we get the following results:
CASE 1: In this first case, we consider that the morphisms between two

Chu spaces are bijections, i. e., such morphisms have an inverse.

Theorem 4. Let A = (A, r,X) and B = (B, s, Y ) Chu space and f = (f1, f2)
are Chu morphism between A and B where f = (f1, f2) are such that f1 and f2
are bijections then there f† = (f†

1 , f
†
2 ) between B and A where f†

1 = f−1
1 and

f†
2 = f−1

2 .

Proof. We want to show that with the restriction that we did, we have:

s(b, f†
2 (x)) = r(f†

1 (b), x) ∀b ∈ B, x ∈ X.

With the hypothesis that f1 and f2 are bijections, given b ∈ B there is a unique
a such that f1(a) = b and a unique y such that f2(y) = x.

M. Alcântara, W. Oliveira, T. Silva 39

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Thus,

s(b, f†
2 (x)) = s(f1(a), f

†
2 (x)) = r(a, f2(f

†
2 (x))) = r(a, x)

and

r(f†
1 (b), x) = r(f†

1 (f1(a)), x) = r(a, x).

⊓⊔

This result corresponds to a particularity of the category ChuK−groupoid,
i.e, a groupoid is a category in which each morphism has an inverse.

Notation: gChuK - the category which has Chu spaces as objects and bi-
jections as morphisms.

Another interesting case is the category FdUnit which has finite dimensional
Hilbert spaces as objects and unitary operators as morphisms.

A morphism is called unitary if f† = f−1. Thus, in gChuK all our morphisms
are unitary.

CASE 2:In this case, we use Lafont’s approach[14], which sees Chu space
as a generalization of vector spaces.

We know that given a finite dimensional vector space X, its dual space,
X∗ = φ : X → K, consists of linear maps fromX to its scalars fieldK. Supposing
that these spaces have the same dimension, and thus are isomorphic as vector
spaces (X ≡ X∗), so there is a bijective linear transformation between them:
T : X → X∗. In other words, a bijective linear map is an isomorphism between
vector spaces.

We extend the basic notions of linear algebra to Chu space by Lafont [14],
rewriting the Chu space A = (A, r,X) as:

A = (X, 〈 | 〉, X∗),

r is considered as the evaluation braket (x, f) 7→ 〈x|f〉 = f(x) which corresponds
to a (bilinear) map from X ×X∗ to K (with X∗ the dual of X).

Thus, a linear map u from (X, 〈 | 〉, X∗) to (Y, 〈 | 〉, Y ∗) consists of two maps
u∗ : X → Y and u∗ : Y ∗ → X∗ such that:

〈u∗(x)|g〉 = 〈x|u∗(g)〉

for all x ∈ X and g ∈ Y ∗.
Therefore, to obtain the dagger structure we suppose that there is a bijection

between X and its dual X∗, i.e., we assume that they have the same dimension,
X ≡ X∗.

Lemma 5. Let A = (X, r,X∗) Chu space and A⊥ = (X∗, r̆, X) its dual, where
r̆(x, g) = r(g, x), for all x ∈ X and g ∈ X∗. So

A ≃ A⊥ ⇔ X ≡ X∗.

40 Chu Spaces As a Toy Model For Quantum Mechanics

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Proof. (⇒) If A ≃ A⊥, then there is a bijective morphism i : A → A⊥ consisting
of the pair of bijections (i1, i2) such that i1 : X → X∗ and i2 : X∗ → X.

∴ X ≡ X∗.

(⇐) If X ≡ X∗ then there is a bijection σ : X → X∗.Thus, there is the
inverse σ−1 : X∗ → X where given g ∈ X∗ There is a unique x ∈ X such that
σ(x) = g. Thus, there is an isomorphism i : A → A⊥.

∴ A ≃ A⊥.

⊓⊔

Theorem 6. Let h : (X, 〈 | 〉, X∗) → (Y, 〈 | 〉, Y ∗) Chu morfism, h = (f, f∗)
where f : X → Y and g : Y ∗ → X∗ such that X ≡ X∗ and Y ≡ Y ∗. Then there
a dagger structure h† : (Y, 〈 | 〉, Y ∗) → (X, 〈 | 〉, X∗) with h† = (f†, g†) where
f† : Y → X and g† : X∗ → Y ∗.

Proof. If f : X → Y, by hypothesis we have to X ≡ X∗ and Y ≡ Y ∗. Hence,
there is a morphism f ′ : X∗ → Y ∗, with f ′(x∗) = f ′(x∗)∗ = f(x), for all x∗ ∈ X∗

and x ∈ X. Analogously, if g : Y ∗ → X∗ by hypothesis we have to X∗ ≡ X and
Y ∗ ≡ Y then there a morphism g′ : Y → X such that g′(y) = g(y∗)∗ = g(y∗),
for all y∗ ∈ Y ∗ and y ∈ Y. Taking f† = g′ and g† = f ′ we get the desired dagger
structure. ⊓⊔

Basis structure forms an essential part of any quantum category, in the ap-
proach of [6] and that several authors axiomatize Quantum Mechanics using
dagger closed compact categories.

Coeke and Pavlovic [6] points out that the definition of complementary struc-
tures in FdHilb coincides with the standard one in quantum mechanics and an
equivalent algebraic characterization of complementary observables is given by
the following theorem:

Theorem 7 ([6]). In a category with enough points each pair of complementary
basis structures forms a (scaled) Hopf bialgebra with trivial antipode.

Coeke and Pavlovic continue to show that this abstract definition captures
most of the complementary observable behavior of quantum mechanical systems
[6].

For the particular case in which every morphism is an isomorphism, with our
‘involution’ functor † defined over the tensor product ⊗, we have the structure
comonoid (A, δ, ǫ) where δ : A → A ⊗ A is the diagonal map δ(a) = (a, a) and
ǫ : A → 1 is constant map ǫ(a) = 1, provides a base structure for the particular
subcategories seen in the cases 1 and 2.

Category Theory have been used in Quantum Mechanics earlier than in [6].
For example, [10] proposes the use of monoidal comonads. In [18] is proposed the
use of Frobenius monadas and pseudomonads. All based on monoidal category,
which ChuK is. For a basic introduction to this part of the Categorical Quantum

M. Alcântara, W. Oliveira, T. Silva 41

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Mechanics field we suggest reading the book [19]. We do not develop this line
here which is much more complex and general with applications in Topological
Quantum Field Theory (see for example [13]). There is much to explore and this
is what we intend to do in the continuations of this work.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols.
In: Proceedings of 19th IEEE conference on Logic in Computer Science, page
415–425., 2004.

[2] M. Barr. *-Autonomous categories with an Appendix by Po-Hsiang Chu, volume
752 of Lecture notes in mathematics, 752. Springer-Verlag, 1979.

[3] Michael Barr. The separated extensional Chu category. Theory and Applications
of Categories, 4(6):137–147, 1998.

[4] B. Coecke. New Structures for Physics, volume 813. Springer-Verlag Berlin Hei-
delberg, 2011.

[5] B. Coecke, E. O. Paquette, and D. Pavlovic. Classical structures and quantum
structures. In S. Gay and I. Mackie, editors, Semantic Techniques in Quantum
Computation and Iformation. Cambridge University Press, 2008.

[6] B. Coecke and D. Pavlovic. Quantum measurements without sums. In: Mathe-
matics of Quantum Computing and Technology, G, 2007.

[7] Bob Coecke. Introducing categories to the practicing physicist. InWhat is category
theory, pages 45–74, 2006.

[8] Bob Coecke and Bill Edwards. Toy quantum categories (arXiv:0808. Electronic
Notes in Theoretical Computer Science, 2008.

[9] Maigan S. da S. Alcântara. Espaço de chu como modelo para mecânica quântica.
Master’s thesis, Universidade Federal Rural de Pernambuco, Recife - Brazil, 2016.

[10] Brian Day and Ross Street. Quantum categories, star autonomy, and quantum
groupoids. In in” Galois Theory, Hopf Algebras, and Semiabelian Categories”,
Fields Institute Communications 43 (American Math. Soc. Citeseer, 2004.

[11] S. Eilenberg and Mac Lane. General theory of natural equivalences, volume 58.
Transactions of the American Mathematical Society, 1945.

[12] Jean-Yves Girard. Linear logic. Theor. Comput. Sci. (TCS), 50:1–102, 1987.
[13] Joachim Kock. Frobenius algebras and 2-d topological quantum field theories,

volume 59. Cambridge University Press, 2004.
[14] Yves Lafont and Thomas Streicher. Games semantics for linear logic. In Logic in

Computer Science, 1991. LICS’91., Proceedings of Sixth Annual IEEE Symposium
on, pages 43–50. IEEE, 1991.

[15] S. MacLane. Categories for the Working Mathematician. 2nd edition. Springer-
Verlag, 1998.

[16] V. R. Pratt. Chu spaces: Notes for school on category theory and applications.
Technical report, University of Coimbra, Coimbra, Portugal, July 1999.

[17] Vaughan R. Pratt. Comonoids in chu: a large Cartesian closed sibling of topolog-
ical spaces. 12 pp. (electronic), in CMCS’03: Coalgebraic Methods in Computer
Science, Proceedings of the 6th Workshop held in Warsaw, 82(1):(electronic, 2003.

[18] Ross Street. Frobenius monads and pseudomonoids. Journal of mathematical
physics, 45(10):3930–3948, 2004.

[19] Ross Street. Quantum Groups: a path to current algebra, volume 19. Cambridge
University Press, 2007.

42 Chu Spaces As a Toy Model For Quantum Mechanics

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Tool Support for Formal Component-based
Development

D. I. A. Pereira, M. V. M. Oliveira and S. R. R. Silva

Universidade Federal do Rio Grande do Norte – Brazil
dalayalmeida@ppgsc.ufrn.br, marcel@dimap.ufrn.br, sarahraquelrs@gmail.com

Abstract. In previous work we have presented a CSP based approach
for developing component-based asynchronous systems, BRIC, which
guarantees deadlock freedom by construction. It uses CSP to specify the
constraints and interactions between the components to allow a formal
verification of the composition’s behaviour. In this work we present a
tool that automates the verification of component composition by au-
tomatically generating and checking the side conditions imposed by the
approach. Besides this, the tool also includes a support to BRICK, an
optimisation of BRIC, that enriches the components with metadata con-
taining additional useful information, decreasing the complexity of the
composition verifications.

Keywords: Component-Based Systems, CSP, Automation

1 Introduction

The use of increasingly complex applications is demanding a greater invest-
ment of resources in software development processes. Component-based System
Development (CBSD) has emerged [7] as a promising approach for mastering
this complexity. In this paradigm, the system is divided into independent pieces
of software (components) that can interact and communicate with each other,
yielding a final more complex system. A component is a composition unity with
contractually specified interfaces and with only explicit context dependencies.

Although CBSD has improved the quality of final products and the organ-
isation of the development process, it lacks formalisation, which is still a big
source of problems specially for reliable systems. In order to improve reliability,
Formal Methods arise in the development cycle, solving some of the problems
and proving to be an interesting development approach for critical systems.

Communicating Sequential Processes [6] (CSP) is a formal notation used to
model concurrent and reactive applications where processes interact with each
other exchanging messages. The use of CSP allows us to identify problems such
as deadlock (when two or more processes are blocked because they are waiting
the execution or resources held by each other). CSP has a set of tools that
facilitate its use like, for instance, the model-checker FDR3 [3].

In [10, 11], Ramos presented an approach, called BRIC, for the trustful and
systematic development of component-based systems for CSP models. In BRIC,

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



component composition is achieved using four predefined rules that impose re-
strictions on the basic components. Once the restrictions are satisfied, deadlock-
freedom is ensured by construction. Besides the BRIC strategy, Ramos devel-
oped an extension, BRICK, that inserts metadata inside the components as a
way to decrease the number and the complexity of the verifications when com-
posing components.

The use of these approaches may demand too much effort on specifying com-
ponents, their compositions and still guarantee the correctness of the whole
specification, which can make their practical application too complex and cum-
bersome. This paper presents a tool, BTS (BRIC Tool Support), which provides
a simpler way to create and compose BRIC components. More importantly, it
provides a complete analysis of the components and their compositions, mak-
ing the development process safer and more efficient. The tool also considers
the extension of BRIC, BRICK, allowing the user to include metadata to the
components and decreasing even more the verification costs.

In Section 2 we introduce CSP. BRIC and BRICK are described in Section 3.
BTS is presented in Section 4. Its evaluation is described in Section 5. Finally,
we draw our conclusions and discuss about related and future work in Section 6.

2 CSP

CSP is one of the most well established formalisms for describing and analysing
concurrent systems. It is used to model applications where independent com-
ponents called processes interact with each other and with the outer world ex-
changing messages (events).

In CSP, the most basic processes are SKIP and STOP; the former successfully
terminates the execution, and the later deadlocks. The prefixing a -> P is ini-
tially able to perform the simple event a, after which it will behave like P. The
prefixing operator can also be used to denote directional communication. The
process c!v -> P sends the value v via channel c and behaves as P afterwards;
and the process c?x -> P receives a value through channel c and assigns it to
the implicitly declared variable x, which can then be referred to in the subse-
quent behaviour P. Two processes can be composed in interleave. In P ||| Q,
the processes P and Q execute concurrently, but they do not synchronise on any
event. It is also possible to compose two processes in parallel synchronising in
a specific set of event cs. In P [| cs |] Q, the processes P and Q are executed
concurrently and synchronise on the events in cs.

There are several well-established semantic models of CSP, one of them is
the traces model (T ) [12]. The set traces(P) contains all possible sequences of
events in which P can engage. In order to verify the truthfulness of a property
on FDR3 it is possible to define assertions like assert P :[deadlock free],
that, in this case, checks if the process P holds the deadlock freedom property.

44 Tool Support for Formal Component-based Development

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



3 BRIC

BRIC [11] is a method for trustful and systematic development of component
based systems. It describes components as contracts and imposes restrictions
to component compositions in order to guarantee the safety of the final results.
BRIC provides four composition rules (two binary rules and two unary rules),
each one with specific well defined conditions for valid applications. The compo-
nent contract definition is presented below:

Definition 1 (Component contract). A component contract Ctr : 〈B,R, I, C〉
comprises its behaviour B, which is described as a restricted form of CSP pro-
cess, I/O process, described below, a set of channels C, a set of data types I, and
a total function R : C → I from channels to their types.

We use BCtr , RCtr , ICtr and CCtr to denote the elements of the contract Ctr .
The behaviour BCtr is an I/O process, that is: whenever c.x ∈ αP , then c is
either an input or an output channel (αP denotes the set of events that P can
communicate); P has infinite traces (but finite state space); P is divergence free,
P is input deterministic, that is, after every trace of P , if a set of input events
of P may be offered to the environment, they may not be refused by P after
the same trace; P is strongly output decisive, that is, all choices (if any) among
output events on a given channel in P are internal.

Usually, a component is defined once and reused multiple times, and in mul-
tiple different contexts. In this work, we represent these contexts as a set of
channels, since channels represent interaction points of the component, and each
channel is used to communicate with a single component in the environment.
So, replacing the channels of a component contract by another set means that
it supposedly interacts with another environment.

The interactions between two contracts in a composition must be asyn-
chronous mediated by a (possibly infinite) bi-directional buffer (BUFFIO). The
asynchronous binary composition between the contracts Ctr1 and Ctr2 on the
channels ic and oc is represented by Ctr1〈ic〉 � 〈oc〉Ctr2 and the asynchronous

unary composition of Ctr1 on the channels ic and oc is represented by Ctr1 �
∣∣〈ic〉
〈oc〉.

The first composition rule is Interleave, which aggregates two independent
entities such that will not communicate with each other.

Definition 2 (Interleave composition). Let Ctr1 and Ctr2 be two component
contracts, such that CCtr1 ∩ CCtr2 = ∅. Then, the interleave composition of Ctr1
and Ctr2, namely Ctr1 [|||] Ctr2, is given by Ctr1 [|||] Ctr2 = Ctr1〈〉 � 〈〉Ctr2.

In this rule, components do not share any channel, so no synchronisation is
performed. It is a particular kind of composition that involves no communication.

The second rule is based on the traditional way to compose two components,
attaching two components connecting two channels, one from each component.
In order to attach the channels, protocols must have been defined. A protocol
is an I/O process that inputs solely by a unique channel and outputs solely

D. Pereira, M. Oliveira, S. Silva 45

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



by a unique channel. The proviso of strong compatibility between two channels
ensures that the outputs of each process is always accepted by the other process.
Hence, no information generated (an output) by a process is leaked; all of them
are accepted by its peer in the communication.

Definition 3 (Communication composition). Let Ctr1 and Ctr2 be two
component contracts, and ic and oc two channels, such that: ic ∈ CCtr1 ∧ oc ∈
CCtr2 , CCtr1∩ CCtr2 = ∅, and; BCtr1 � {ic} and BCtr2 � {oc} are strong compatible.
Then, the communication composition of P and Q, namely Ctr1[ic ↔ oc]Ctr2,
via ic and oc is defined as follows: Ctr1[ic ↔ oc]Ctr2 = Ctr1〈ic〉 � 〈oc〉Ctr2.

BRIC also provides unary compositions, which enables building systems with
cyclic topologies, assembling two channels of the same component. As a result,
due to the existence of possible cycles, new conditions are required to preserve
deadlock freedom. The unary compositions rules are: feedback and reflexive.

Definition 4 (Feedback composition). Let Ctr be a component contract,
and ic and oc two communication channels, such that {ic, oc} ⊆ CCtr are inde-
pendent in Ctr, and BCtr � ic and BCtr � oc are strong compatible. Then, the
feedback composition of Ctr, namely Ctr [oc ↪→ ic], hooking oc to ic, is defined

as follows: Ctr [oc ↪→ ic] = Ctr �
∣∣〈ic〉
〈oc〉.

The feedback composition represents the simpler unary composition case, where
two channels of the same component are assembled, but do not introduce a new
cycle [10]. This is achieved by the proviso of decoupled channels. A channel ch1

is independent (or decoupled) of a channel ch2 in a process when any communi-
cation of ch2 does not interfere with the order of events communicated by ch1.
It means that they are offered to the environment independently.

The reflexive composition rule deals with more complex systems that indeed
present cycles of dependencies in the topology of the system structure. This
rule connects dependent channels, which may introduce undesirable cycles of
dependencies among the communication of events in the system. In order to
compose components by the reflexive rule, the component’s behavior must be
buffering self-injection compatible, which is very similar to the notion of strong
compatibility, except for the fact that we do not compare the communication
between two simple processes but between events of the same process [10].

Definition 5 (Reflexive composition). Let Ctr be a component contract,
and ic and oc two channels, such that: {ic, oc} ⊆ CCtr , and BCtr � {ic, oc} is
buffering self-injection compatible, then, the reflexive composition is defined as

Ctr [ic ¯↪→ oc] = Ctr �
∣∣〈ic〉
〈oc〉.

BRICK enriches components with metadata in a way to decrease the num-
ber of verifications made when composing them, since some properties of the
new components can be predicted (using their parents) and maintained on the
metadata. Context Processes is one metadata example that represents all the

46 Tool Support for Formal Component-based Development

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



possible communications between a protocol P and another process compati-
ble with it, which allows us to restrict proofs concerning communication via a
specific protocol. The enriched component contract is defined below.

Definition 6 (Enriched component contract). Let Ctr be a component con-
tract, and K a metadata derived from its elements. An enriched component
contract that includes Ctr is represented by Ctr : 〈B,R, I, C,K〉, where K :
〈Prot ,CTX ,DProt ,Dec〉 comprises, a relation from channels to protocols Prot,
a relation from channels to context processes CTX , a relation from channels to
dual protocols DProt and a relation between channels Dec.

Given a protocol P, a dual protocol DP is a deadlock-free protocol such that
inputs(P) = outputs(DP), outputs(P) = inputs(DP), traces(DP) = traces(P).

The metadata is recalculated in every composition from the components par-
ents in a way the user will never have to describe them again. The use of metadata
decreases the number and the complexity of verifications, since the user is giving
more information about the components. Instead of having to check compatibil-
ity among port-protocols in a process P, we check this on port-protocols within
the metadata. Instead of verifying that two channels are decoupled in the same
process, we verify it directly on relations between channels within the metadata.
In this way, we perform lightweight verifications.

The metadata also predicts which channels are decoupled in the new com-
posed component, saving this information on the metadata. This information
is useful for feedback compositions, in order to avoid the verifications of the
independency between channels. However, the resulting metadata may be in-
complete, which means that some scenarios can be not predicted. In this case,
when composing two components, if the system does not find the metadata
needed to make verifications, it will use BRIC rules of verification instead of
BRICK rules. The advantages of using metadata are described in Section 5.

4 BRICK Tool Support

The BRICK approach tend to be too much exhaustive and complex when used
in practice. In order to make it applicable, we developed BTS , a tool that assists
the systematic and trustful development of component-based system. The tool
generates part of the specification automatically, and verifies the whole specifi-
cation in order to guarantee deadlock-freedom based on the BRICK strategy.

Developed in Java, BTS runs on Windows and Linux and its architecture
is composed by 5 main modules: a user interface (GUI), a controller (which
intermediates the interaction between the GUI and the other modules), a logic
model (which specifies and coordinate the basic structures), a specification mod-
ule (creating the specifications based on the data the user inserted on GUI) and
a FDR3 communication module (which communicates with FDR3 and process
the results). The architecture of BTS is presented on Figure 2.

Using BTS , the user follows a sequence of steps to specify a system. The home
screen (Figure 1) shows four lists to which we may add elements. They contain

D. Pereira, M. Oliveira, S. Silva 47

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Fig. 1. The home screen of the BTS tool

Fig. 2. The architecture of BTS

types, channels, contracts and instances of the specification. The definition of
a type requires a name and its definition. A type can be defined as integer,
boolean, interval of integers or datatype. The definition of a channel requires its
name and its communication types, which must be chosen from the existing list
of types. After defining types and channels, the user is ready to define contracts.

The contract definition first requires its name and its CSP behaviour. The
contract channels can be chosen from the list of channels. It is also possible
to define them as input or output and to define the communication channels
(specifying events from the channels). The contract screen (in Figure 3) also
allows the definition of metadata information (protocols, dual protocols, context
processes and decoupled channels) by double-clicking on a cell on the table.

The definition of the contract behaviour, protocols, dual protocols, and con-
text processes must be made as CSP processes. The decoupled channels are
defined by pairing channels from the list of the existing channels. All the meta-
data information are checked during definition to guarantee their correctness.
Some verification requires internal interaction with FDR3. If a metadata is not
defined correctly, it will not be used when composing components. The behavior
definition and decoupled channels definition screens are presented in Figure 4.

Before the user finishes the contract definition, he must verify if the behavior
of the contract is an I/O process. This verification is made by FDR3 and the

48 Tool Support for Formal Component-based Development

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Fig. 3. Contract definition screen

user just needs to press a button. Internally, BTS automatically generates the
CSP scripts that contains the required specification and assertions, interacts
with FDR3 retrieving the verification results and, in case of definition errors, a
screen will show what is wrong based on the FDR3 results.

Fig. 4. Behavior and decoupled channels definition screens, respectively

The contract instantiation screen allows us to rename every channel and to
define the name of the new instance. Internally, BTS verifies that the instances
are indeed a valid component contract. After instantiating the components, BTS
allows users to compose these instances. This simply requires the selection of the
components that will be composed, the channels on which they will communi-
cate (except for Interleaving) and the kind of composition. In order to verify
the validity of the composition, the tool automatically makes the definition of
the assertions, the interaction with FDR3 and the analysis of the results. BTS
returns an error screen that describes any possible errors in the composition or
adds the newly created component to the list of components instances, removing
the composing contracts from this list.

D. Pereira, M. Oliveira, S. Silva 49

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The assertions generated and verified by FDR3 to verify deadlock-freedom
were based on the work presented in [9], in which we define CSP assertions that
correspond to the composition rules side conditions defined in [10]. In [9], we
also describe the assertions that can be discarded when using metadata. This
optimisation is also incorporated in BTS .

The use of metadata in BTS anticipates the verification of some of the com-
positions side conditions to the verification of the contract definition. Besides,
some assertions that were required to verify the correctness of the compositions
are verified earlier in the contract definition and, hence, they no longer need
to be verified. BTS also recalculates the new metadata of a component based
on the metadata of the composing components. Furthermore, composing com-
ponents can only be instantiations of previously defined components contracts.
The verification of their metadata, however, are normally made only once. If
a Contract P that uses metatada is instantiated to contracts P1, P2 and P3

some verifications are only made in P ’s metadata. If no metadata is used, all
verifications are made during composition for each contract instance involved.

5 Evaluation

The tools initial evaluation was achieved based on two case studies. The first one
is the dining philosophers described in [11]. The second case study was a ring
buffer described in [9, 14]. The results of this evaluation can be found in Table 1.

Table 1. Evaluation details of the BTS tool

Evaluation Dining Philosophers Ring Buffer

Contracts 2 2

Instances created 6 4

Verifications of protocols metadata 4 8

Verifications of Dec. channels metadata 0 1

Interleave compositions 4 2

Communications compositions 1 1

Feedback compositions 8 4

Reflexive compositions 1 1

Assertions sent to FDR3 344 270

Lines of CSP specification 500 501

System verification time (ms) 4632 7593

Using BTS , the definition of types, channels, interfaces, contracts and in-
stances were made in an automatically way with the use of an interface to guide
the user. The verification of these contracts and their instances using FDR3 was
transparent to the user. All compositions rules were used in these examples and
verified automatically, using FDR3, by BTS . We have also included metadata
into the contracts and used the optimised version of the development approach.

50 Tool Support for Formal Component-based Development

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The use of metadata considerably reduced the number of assertions. In the
dining philosophers, we had four protocol verifications during the basic con-
tracts definition (two for each contract). If the original BRIC approach were
applied, this verification would be made only on instances, which would increase
the number of verifications needed to twelve, two for each instance. The same
applies to the protocols and dual protocols of both examples. It was also not nec-
essary to define decoupled channels, but, after each composition, recalculating
was executed to predict which channels were decoupled. However, the recalcula-
tion after the communication composition in the Ring Buffer example was not
complete, and the first feedback composition needed to be verified using the
original approach. This switch of rule application from the optimised version to
the corresponding original one was also transparent to the user.

More than 600 assertions were generated and sent to FDR3 automatically.
BTS also received the FDR3 results and presented them, hiding the CSP details
that may have invalidated the compositions. These details, however, are easily
accessible in case the user requires them. Using these assertions, the tool was able
to automatically prove the absence of deadlocks in both examples. Furthermore,
over 1000 lines of specification were automatically created by BTS after the
last compositions. These numbers clearly demonstrate the amount of exhaustive
work that BTS automatises, which would be made manually otherwise.

The verification of all assertions was made ina a computer Intel(R) Core(TM)
i7-3537U CPU 2.00GH, 8Gb RAM, Windows Embedded 8.1 Industry Pro 64bits.
The overall time of this verification is presented in the last line of the table.

6 Conclusion

In this work we have developed a tool that automates the systematic construction
of trustworthy component-based systems, which makes use of CSP and FDR3 to
generate the specifications of the system and verify them automatically. The tool
was evaluated by two case studies, generating and verifying all the specifications
in a transparent manner to the user.

BTS is the first tool that automates the BRICK approach, however, some
tools have been created to automate formal approaches for specifying component
based systems. Some of the existing tools are [13], [15] and [2], which use existing
approaches ([1], [5] and [4], respectively) for creating and verifying component
based developments. The BRICK’s limitation is the CSP expressiveness limit,
which allows us to describe a bigger variety of systems when compered to other
approaches. [1], [5] and [4] do not use protocols to alleviate the costs of verifi-
cation. Furthermore, [1] and [5] are applied only to embedded and distributed
systems and [4] does not present efforts to allow reuse of components. BRICK
is not limited to embedded or distributed systems, and the use of protocols and
the reuse of components are some of the advantages of this approach.

The work presented in [8] presents an optimisation to BRICK that makes
use of behavioral patterns to reduce the verification costs during composition.
The introduction of this approach to BTS is in our near future research agenda.

D. Pereira, M. Oliveira, S. Silva 51

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



References

1. Mikael Åkerholm, Jan Carlson, Johan Fredriksson, Hans Hansson, John H̊akansson,
Anders Möller, Paul Pettersson, and Massimo Tivoli. The save approach to
component-based development of vehicular systems. Journal of Systems and Soft-
ware, 80(5):655–667, 2007.

2. Nikola Beneš, Luboš Brim, Ivana Černá, Jǐŕı Sochor, Pavĺına Vařeková, Barbora
Zimmerová, et al. The coin tool: Modelling and verification of interactions in
component-based systems. pages 221–225, 2008.

3. A.W. Roscoe Thomas Gibson-Robinson Philip Armstrong Alexandre Boulgakov.
FDR3 — A Modern Refinement Checker for CSP. In Erika brahm and Klaus
Havelund, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 8413 of Lecture Notes in Computer Science, pages 187–201, 2014.

4. Luboš Brim, Ivana Černá, Pavĺına Vařeková, and Barbora Zimmerova. Component-
interaction automata as a verification-oriented component-based system specifica-
tion. In ACM SIGSOFT Software Engineering Notes, volume 31. ACM, 2005.

5. Object Management Group. The Common Object Request Broker (CORBA): Ar-
chitecture and Specification. Object Management Group, 1995.

6. Charles Antony Richard Hoare. Communicating sequential processes. Communi-
cations of the ACM, 21(8):666–677, 1978.

7. M Douglas McIlroy, JM Buxton, Peter Naur, and Brian Randell. Mass-produced
software components. In Proceedings of the 1st International Conference on Soft-
ware Engineering, Garmisch Pattenkirchen, Germany. sn, 1968.

8. M. V. M. Oliveira, P. Antonino, R. Ramos, A. Sampaio, A. Mota, and A. W.
Roscoe. Rigorous Development of Component-Based Systems using Component
Metadata and Patterns. Formal Aspects of Computing, pages 1 – 68, 2016. The
original publication is available at www.springerlink.com.

9. M. V. M. Oliveira, A. C. A. Sampaio, P. R. G. Antonino, J. D. Oliveira, M. C. Filho,
and J. Bryans. Compositional Analysis and Design of CML Models. Technical
Report D24.4, COMPASS Deliverable, 2014.

10. Rodrigo Ramos, Augusto Sampaio, and Alexandre Mota. Systematic development
of trustworthy component systems. In Formal Methods, volume 5850 of Lecture
Notes in Computer Science, pages 140–156. Springer, 2009.

11. Rodrigo Teixeira Ramos. Systematic Development of Trustworthy Component-
based Systems. PhD thesis, PhD thesis, Center of Informatics-Federal University
of Pernambuco, Brazil, 2011.

12. Andrew William Roscoe, Charles AR Hoare, and Richard Bird. The theory and
practice of concurrency, volume 1. Prentice Hall Englewood Cliffs, 1998.

13. Séverine Sentilles, Anders Pettersson, Dag Nystrom, Thomas Nolte, Paul Petters-
son, and Ivica Crnkovic. Save-ide-a tool for design, analysis and implementation of
component-based embedded systems. In Proceedings of the 31st International Con-
ference on Software Engineering, pages 607–610. IEEE Computer Society, 2009.

14. Sarah Raquel da Rocha Silva. Bts: uma ferramenta de suporte ao desenvolvimento
sistemático de sistemas confiáveis baseados em componentes. Master’s thesis, Uni-
versidade Federal do Rio Grande do Norte, 2013.

15. Ousmane Sy, Rémi Bastide, Philippe Palanque, D Le, and David Navarre. Petshop:
a case tool for the petri net based specification and prototyping of corba systems.
Petri Nets 2000, page 78, 2000.

52 Tool Support for Formal Component-based Development

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Non-involutive bilattices

Paulo Maia1 Umberto Rivieccio2 Achim Jung3

1 Programa de Pós-Graduação em Matemática Aplicada e Estat́ıstica, UFRN, Brazil
2 Departamento de Informática e Matemática Aplicada, UFRN, Brazil

3 School of Computer Science, University of Birmingham, UK

Abstract. One of the main intuitions behind bilattices is to view truth values as
split into two components, representing respectively positive and negative evidence
concerning a given proposition. Since positive and negative evidence do not need to
be the complement of each other, this framework allows one to deal with partial as
well as inconsistent information. On an algebraic level, this intuition is reflected in
the fact that every bilattice can be represented as a special product of two lattices:
positive-evidence lattice and the negative-evidence lattice. In principle, such lattices
do not need to be related, that is, the domains of positive and negative evidence may
coincide. In this work, we look at algebraic structures having a pre-bilattice reduct
and a negation operator that is no longer required to be involutive, which we call non-
involutive bilattices. Our contribution is threefold: (1) we show that non-involutive
bilattices are a general framework that encompass many of the above-mentioned
structures: namely, pre-bilattices, bilattices with an involutive negation, bilattices
with implication and d-frames; (2) e provide equational presentations for the class of
all non-involutive bilattices and the subclasses corresponding to bilattices with an
involutive negation, bilattices with implication etc; (3) finally, for each of these we
prove a representation theorem that allows us to view any algebra in the class as a
bilattice product of two lattices.

1 Introduction

Nuel Belnap [2] gave a famous philosophical justification for considering two orders on truth
value spaces, the information order and the logical order. In this respect he suggested that,
in addition to the classical logical values true and false, it would be useful to have values >
and ⊥ for the information order, corresponding to the situation when there is contradicting
information (>) and lack of information (⊥).

Belnap’s approach was generalized by Matthew Ginsberg [7], who introduced this
generalization as a uniform framework for inference in Artificial Inteligence. Since then, the
Belnap-bilattice formalism has found a variety of applications in quite different areas from
the original ones. Nowadays the interest in bilattices has thus different sources, among others:
computer science and A.I. [7], [1], logic programming [6], lattice theory and algebra [11],
algebraic logic and topological duality theory [3], [4], [10], [5].

One of the main intuitions behind bilattices is to view truth values as split into two
components, representing respectively positive and negative evidence concerning a given
proposition. Since positive and negative evidence need not be the complement of each other,
this framework allows one to deal with partial as well as inconsistent information. At the
algebraic level, this intuition is reflected by the fact that every bilattice can be represented
as a special product L1 × L2 (called bilattice product or twist-structure) of two lattices (L1

being the positive-evidence lattice and L2 the negative-evidence lattice). In principle L1 and

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



L2 do not need to be related, that is, the domains of positive and negative evidence may
not coincide. However, all bilattice-based logics considered in the literature so far (Ginsberg,
Fitting, Arieli-Avron) rely on the assumption that L1 and L2 are isomorphic. This structural
constraint is imposed by the presence of an involutive negation in the logical language, that
is a negation that behaves classically in that any proposition ϕ is equivalent, in the strongest
possible sense, to ¬¬ϕ.

In this contribution, we look at algebraic structures having a pre-bilattice reduct (see
e.g. [4]) and a negation operator that is no longer required to be involutive, which we
call non-involutive bilattices. We believe these to be natural structures to be considered
from the point of view of the the Belnap-Ginsberg original motivation, for there is no
reason to assume that the domain of positive and that of negative evidence must coincide.
Furthermore, non-involutive bilattices allow us to rigorously formulate a very natural and
expected connection between bilattice-based logics and the topological setting of d-frames
and bitopological spaces [9].

We show that non-involutive bilattices are a general framework that encompass many
of the above-mentioned structures: namely, pre-bilattices, bilattices with an involutive
negation, bilattices with implication [3] and d-frames. We provide equational presentations
for the class of all non-involutive bilattices and the subclasses corresponding to bilattices
with an involutive negation, bilattices with implication etc. For each of these we prove a
representation theorem that allows us to view any algebra in the class as a bilattice product
of two lattices and a categorical equivalence for non-involutive bilattices. The key to our
generalized product bilattice construction is to consider pairs of lattices L1, L2 together
with maps n : L1 → L2, p : L2 → L1 between them. These maps allow us to turn positive
into negative evidence and vice versa, without requiring the two domains to be isomorphic.
By imposing additional properties on the maps n and p (e.g. being meet-preserving) we are
then able to recover various bilattice-type structures considered in the literature as special
cases of our non-involutive bilattices.

This work is a generalization of [8], to which we also refer for further technical details on
the product construction of non-involutive bilattices.

The rest of the paper is organized as follows. In Section 2 we introduce some basic
concepts of bilattices; Section 3 presents non-involutive bilattices and gives a categorical
interpretation for them, while in Section 4 we do the same for non-involutive implicative
bilattices; finally, Section 5 concludes the paper.

2 Preliminaries

In what follows, we will introduce well known concepts of bilattices. See [6] for a gentle
introduction to bilattices theory.

Definition 1. A pre-bilattice is an algebra B = 〈B,∧,∨,u,t〉 such that 〈B,∧,∨〉 and
〈B,u,t〉 are both lattices.

The lattice 〈B,∧,∨〉 is called the truth lattice or t-lattice; its order is denoted by ≤t and
is called the truth, t−order. The lattice 〈B,u,t〉 is called the knowledge lattice or k-lattice
and its order ≤k the knowledge, k−order.

A pre-bilattice B = 〈B,∧,∨,u,t〉 is called interlaced whenever each one of the four
operations {∨,∧,t,u} is monotonic with respect to both orders ≤t and ≤k.

54 Non-involutive bilattices

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Let L+ = 〈L+,∧+,∨+〉 or L=〈L−,∧−,∨−〉 be lattices with associated orders ≤+ and
≤−, respectively. The product pre-bilattice L+ � L− = 〈L+ × L−,∧,∨,u,t〉 is defined as
follows. For all (a, b), (c, d) ∈ L+ × L−:

1. (a, b) ∧ (c, d) = (a ∧+ c, b ∨− d).
2. (a, b) ∨ (c, d) = (a ∨+ c, b ∧− d).
3. (a, b) u (c, d) = (a ∧+ c, b ∧− d).
4. (a, b) t (c, d) = (a ∨+ c, b ∨− d).

The algebra L+ � L− is always an interlaced pre-billatice, and, from the definition, it
follows that:

(a, b) ≤t (c, d) iff a ≤+ c and d ≤− b

(a, b) ≤k (c, d) iff a ≤+ c and b ≤− d

That is, a member (x, y) ∈ L+ � L− can be thought as encoding evidence about
some assertion: evidence for, x, and evidence against, y. Then an increase in information
(knowledge) amounts to saying that evidence in general goes up. An increase in truth implies
that evidence for increases while evidence against decreases.

3 Non-involutive product bilattices

Let L+ = 〈L+,∧+,∨+〉 and L− = 〈L−,∧−,∨−〉 be lattices and let − : L+ → L− and
+ : L− → L+ be maps between them. We can construct the non-involutive product
bilattice

L+ ./ L− = 〈L+ × L−,∧,∨,u,t,¬〉
as follows: 〈L+ × L−,∧,∨,u,t〉 is the product pre-bilattice as defined above and

¬〈α+, α−〉 := 〈(α−)+, (α+)−〉.

Definition 2. A non-involutive bilattice is an interlaced pre-bilattice B = 〈B,∧,∨,u,t,¬〉
with the properties:

¬(x ∧ y) ≡+ ¬(x t y) ¬(x ∧ y) ≡− ¬(x u y)

where

≡+ := {〈α, β〉 ∈ B ×B : α ∧ β = α t β}

≡− := {〈α, β〉 ∈ B ×B : α ∧ β = α u β}.

Theorem 1. Every non-involutive product bilattice L+ ./ L− = 〈L+ × L−,∧,∨,u,t,¬〉 is
a non-involutive bilattice.

Proof. Since L+ ./ L− = 〈L+ × L−,∧,∨,u,t,¬〉 is an interlaced pre-bilattice, the only
thing we need to prove is that ¬(x ∧ y) ≡+ ¬(x t y) and ¬(x ∧ y) ≡− ¬(x u y).

Let (a, b), (c, d) ∈ L+ ./ L−. Then,

¬((a, b) ∧ (c, d)) = ((b ∨ d)+, (a ∧ c)−) and ¬((a, b) t (c, d)) = ((b ∨ d)+, (a ∨ c)−)

P. Maia, U. Rivieccio, A. Jung 55

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Thus,

¬((a, b)∧(c, d))∧¬((a, b)t(c, d)) = ((b∨d)+∧(b∨d)+, (a∧c)−∨(a∨c)−) = ((b∨d)+, (a∧c)−∨(a∨c)−)

and

¬((a, b)∧(c, d))t¬((a, b)t(c, d)) = ((b∨d)+∨(b∨d)+, (a∧c)−∨(a∨c)−) = ((b∨d)+, (a∧c)−∨(a∨c)−)

That is,

¬((a, b) ∧ (c, d)) ∧ ¬((a, b) t (c, d)) = ¬((a, b) ∧ (c, d)) t ¬((a, b) t (c, d))

Hence
¬((a, b) ∧ (c, d)) ≡+ ¬((a, b) t (c, d))

The proof of ¬((a, b) ∧ (c, d)) ≡− ¬((a, b) t (c, d)) is similar.

Therefore, L+ ./ L− is a non-involutive bilattice. ut

We will denote for [a]+ and [a]− the equivalence class of a in B/ ≡+ and B/ ≡+,
respectively.

The proof of the following lemma is given in [4], Proposition 3.8.1.

Lemma 1. Let B = 〈B,∧,∨,u,t,¬〉 a non-involutive bilattice. Then, B/≡+ and B/≡−
are lattices with the operations:

[a]+ t [b]+ = [a t b]+

[a]+ u [b]+ = [a u b]+

[a]− t [b]− = [a t b]−

[a]− u [b]− = [a u b]−

Hence we have the following result.

Lemma 2. B = 〈B,∧,∨,u,t,¬〉 is a non-involutive bilattice iff x ≡+ y ⇒ ¬x ≡− ¬y and
x ≡− y ⇒ ¬x ≡+ ¬y.

Proof. Let B = 〈B,∧,∨,u,t,¬〉 a non-involutive billatice and α ≡+ β, i.e. α ∧ β = α t β.
Then,

¬α = ¬(α u (α t β)) lattice identities

= ¬(α u (α ∧ β)) α ∧ β = α t β
≡− ¬(α ∧ α ∧ β) ¬(x ∧ y) ≡− ¬(x u y)

= ¬(β ∧ α ∧ β) lattice identities

≡− ¬(β u (α ∧ β)) ¬(x ∧ y) ≡− ¬(x u y)

= ¬(β u (α t β)) α ∧ β = α t β
= ¬β lattice identities.

We conclude that ¬α ≡− ¬β as required.

56 Non-involutive bilattices

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Similarly, using ¬(x∧y) ≡+ ¬(xuy) we have α ≡+ β implies ¬α ≡− ¬β. This shows that,
for every non-involutive bilattice, we have x ≡+ y ⇒ ¬x ≡− ¬y and x ≡− y ⇒ ¬x ≡+ ¬y.

The converse is easy, because the interlacing conditions imply that e.g. x ∧ y ≡+ x u y
and so by applying the α ≡+ β ⇒ ¬α ≡− ¬β we obtain e.g. ¬(x∧ y) ≡− ¬(xu y). Similarly,
for ¬(x ∧ y) ≡+ ¬(x t y). ut

Lemma 3. Let L+ ./ L− = 〈L+ × L−,∧,∨,u,t,¬〉 a non-involutive product bilattice.
Then,

1. [(α1, α2)]+ = [(β1, β2)]+ iff α1 = β1.
2. [(α1, α2)]− = [(β1, β2)]− iff α2 = β2.
3. [(α1, α2)]+ ≤ [(β1, β2)]+ iff α1 ≤ β1.
4. [(α1, α2)]− ≤ [(β1, β2)]− iff α2 ≤ β2.

Proof. Let [(α1, α2)]+ = [(β1, β2)]+. Then, (α1, α2) ∧ (β1, β2) = (α1, α2) t (β1, β2), that is,
(α1 ∧ β1, α2 ∨ β2) = (α1 ∨ β1, α2 ∨ β2), thus, α1 ∧ β1 = α1 ∨ β1. Therefore α1 = β1. The
conversely is easy to see, and 2 is similar to 1.

Now, let [(α1, α2)]+ ≤ [(β1, β2)]+. Then, [(α1, α2)]+ u [(β1, β2)]+ = [(α1, α2)]+, that
is, [(α1 ∧ β1, α2 u β2)]+ = (α1, α2)]+, thus, α1 ∧ β1 = α1, i.e, α1 ≤ β1. 4 can be proved
similarly. ut

Since B/≡+ and B/≡− are lattices, we can define (.)+ : B/≡− −→ B/≡+ and (.)− :
B/≡+ −→ B/≡− by ([x]−)+ = [¬x]+ and ([x]+)− = [¬x]−.

Indeed, (.)+ and (.)− are well-defined, because x ≡+ y ⇒ ¬x ≡− ¬y and x ≡− y ⇒
¬x ≡+ ¬y.

Then, we can see B/≡+ ./ B/≡− for:

For all ([a], [b]), ([c], [d]) ∈ B/≡+ ×B/≡−,

1. ([a]+, [b]−) ∨ ([c]+, [d]−) = ([a]+ t [c]+, [b]− u [d]−).
2. ([a]+, [b]−) ∧ ([c]+, [d]−) = ([a]+ u [c]+, [b]− t [d]−).
3. ([a]+, [b]−) t ([c]+, [d]−) = ([a]+ t [c]+, [b]− t [d]−).
4. ([a]+, [b]−) u ([c]+, [d]−) = ([a]+ u [c]+, [b]− u [d]−).
5. ¬([a]+, [b]−) = (([b]−)+, ([a]+)−).

Theorem 2. Let B = 〈B,∧,∨,u,t,¬〉 a non-involutive bilattice. Then, ηB : B −→
B/≡+ ./ B/≡− defined for ηB(x) = ([x]+, [x]−) is an isomorphism.

Proof. ηB is injective, surjective and preserves ∧,∨,t,u was proved in [[4], Proposition
3.8.6]. It remains to show, η(¬x) = ¬η(x). We have η(¬x) = ([¬x]+, [¬x]−) and ¬η(x) =
¬([x]+, [x]−) = (([x]−)+, ([x]+)−). So η(¬x) = ¬η(x), since = (([x]−)+, ([x]+)−) = ([¬x]+, [¬x]−).

ut

We are going to see that ηB is in fact the unit of categorical equivalence between two
naturally associated categories.

The category NIB has as objects non-involutive bilattices and as morphisms algebraic
non-involutive bilattice homomorphisms. On the other side of our equivalence, the category
NIPB has as objects 4-tuples L = (L+, L−, ()+, ()−) with L+ and L− lattices and ()+ and
()− maps between then. A morphism between NIPB-objects are h : (L1+, L1−, ()

+
1 , ()

−
2 )→

P. Maia, U. Rivieccio, A. Jung 57

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



(L2+, L2−, ()2+ , ()2−) such that h+ and h− are lattices homomorphisms and h+ ◦ ()+1 =
()+2 ◦ h− and h− ◦ ()−1 = ()−2 ◦ h+.

We proceed to define functors T : NIB −→ NIPB and N : NIPB −→ NIB that will
allow us to prove the equivalence between the two categories.

Given a non-involutive bilatticeB, we let T (B) := (B/≡+, B/≡−, ()+, ()−) with ([x]−)+ =
[¬x]+ and ([x]+)− = [¬x]− for all x. If f : B1 −→ B2 is a NIB-morphism, we define
T (f) : T (B1) −→ T (B2) as T (f)([α]+, [β]−) = ([f(α)]+, [f(β)]−).

Lemma 4. T is a covariant functor.

Proof. Indeed T (B1) and T (B2) are NIPB-objects since B1 and B2 are non-involutive
bilattices. It is to see that T (f) is well-defined, T (f) is a NIPB-morphism, f(1B) = 1T (B)

and T (f ◦ g)([α]+, [β]−) = ([(f ◦ g)(α)]+, [(f ◦ g)(β)]−) = ([f(g(α))]+, [f(g(β))]−) = (T (f) ◦
T (g))([α]+, [β]−) for all α and β, that is T (f ◦ g) = T (f) ◦ T (g).

Therefore T is a covariant functor. ut

Conversely, for L = (L+, L−, ()+, ()−) a NIPB-object, we let N(L) = L+ ./ L−. We
know by Theorem 3 that L+ ./ L− is a non-involutive bilattice. For a morphism h : L1 → L2

between NIPB-objects, we define the map N(h) : N(L1) → N(L2), for all a, b ∈ L1, as
N(h)(a, b) := (h+(a), h−(b)). Is easy to see that N is a covariant functor.

Therefore, by Theorem 7, for any B non-involutive bilattice, the map ηB : B → N(T (B))
is an isomorphism.

Theorem 3. For any NIPB-object L, the map εL : L → T (N(L)) defined by εL(a, b) =
([(a, b)]+, [(a, b)]−) is an isomorphism.

Proof. Let (a1, b1), (a2, b2) ∈ L.

If (a1, b1) = (a2, b2) then εL(a1, b1) = ([(a1, b1)]+, [(a1, b1)]−) = ([(a2, b2)]+, [(a2, b2)]−) =
εL(a2, b2), that is εL is well-defined.

If εL(a1, b1) = εL(a2, b2), we have ([(a1, b1)]+, [(a1, b1)]−) = ([(a2, b2)]+, [(a2, b2)]−) then
a1 = a2 since [(a1, b1)]+ = [(a2, b2)]+ and b1 = b2 since [(a1, b1)]− = [(a2, b2)]−, that is
(a1, b1) = (a2, b2). In other words, εL is injective.

Let ([(a1, b1)]+, [(a2, b2)]−) ∈ T (N(L)). Since ([(a1, b1)]+, [(a2, b2)]−) = ([(a1, b2)]+, [(a2, b2)]−) =
([(a1, b2)]+, [(a1, b2)]−) = εL(a1, b2), εL is surjective.

Lastly, εL is a NIPB-morphism. Therefore, εL is an isomorphism. ut

Theorem 4. Let f : B1 → B2 be an NIB-morphism. Then N(T (f)) ◦ ηB1
= ηB2

◦ f .

Proof. Let x ∈ B1. Then (N(T (f))◦ηB1)(x) = N(T (f))([x]+, [x]−) = (T (f)+([x]+), T (f)−([x]−)) =
([f(x)]+, [f(x)]−) = ηB2(f(x)) = (ηB2 ◦ f)(x).

Therefore, N(T (f)) ◦ ηB1
= ηB2

◦ f . ut

Theorem 5. Let h : L1 → L2 be an NIPB-morphism. Then T (N(h)) ◦ εL1
= εL2

◦ h.

Proof. Let (x, y) ∈ L1. Then (T (N(h)) ◦ εL1
)(x, y) = (T (N(h))([(x, y)]+, [(x, y)]−) =

([N(h)(x, y)]+, [N(h)(x, y)]−)) = ([(h+(x), h−(y))]+, [(h+(x), h−(y))]−) = ([h(x, y)]+, [h(x, y)]−) =
εL2(h(x, y)) = (εL2 ◦ h)(x, y).

Therefore, T (N(h)) ◦ εL1
= εL2

◦ h. ut

58 Non-involutive bilattices

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Theorem 6. Functors T : NIB → NIPB and N : NIPB → NIB stablish a natural
equivalence between the category NIB and NIPB.

B1 N(T (B1))

B2 N(T (B2))

ηB1

f N(T (f))

ηB2

L1 T (N(L1))

L2 T (N(L2))

εL1

h T (N(h))

εL2

4 Non-involutive implicative product bilattices

A Brouwerian lattice is a lattice L with the property c∧ a ≤ b iff c ≤ a→ b for all a, b, c ∈ L.

Suppose L+ = 〈L+,∧+,∨+,→+〉 and L− = 〈L−,∧−,∨−,→−〉 are Brouwerian lattices
and − : L+ → L− and + : L− → L+ are maps between them. Then we can construct the
non-involutive implicative product bilattice

L+ ./ L− = 〈L+ × L−,∧,∨,u,t,⊃,⊂ ¬〉

as follows: 〈L+ × L−,∧,∨,u,t〉 is the above-defined non-involutive product bilattice and

〈α+, α−〉 ⊃ 〈β+, β−〉 := 〈α+ →+ β+, (α+)− ∧− β−〉

〈α+, α−〉 ⊂ 〈β+, β−〉 := 〈α+ ∧+ (β−)+, β− →− α−〉

Definition 3. A non-involutive implicative bilattice B = 〈B,∧,∨,u,t,¬,→,←〉 is a non-
involutive bilattice such that 〈B/ ≡+,∧,∨,→〉 and 〈B/ ≡−,u,t,←〉 are Browerian lattices,
and:

x← y ≡+ x u ¬y
x→ y ≡− ¬x u y

.

Theorem 7. Every L+ ./ L− = 〈L+ × L−,∧,∨,u,t,¬,⊃,⊂〉 non-involutive implicative
product bilattice is a non-involutive implicative bilattice.

Proof. It is easy to see that operations are compatible.

We need to show that L+ ./ L−/ ≡+ and L+ ./ L−/ ≡− are Browerian lattices. Indeed,
let [(α1, α2)], [(β1, β2)], [(γ1, γ2)] ∈ L+ ./ L−/ ≡+. If [(α1, α2)] u [(β1, β2)] ≤ [(γ1, γ2)],
we have [(α1, α2) u (β1, β2)] ≤ [(γ1, γ2)], thus, [(α1 ∧+ β1, α2 ∧− β2)] ≤ [(γ1, γ2)], that
is, α1 ∧+ β1 ≤ γ1, then, α1 ≤ β1 →+ γ1 since L+ is a Browerian lattice. Therefore,
[(α1, α2)] ≤ [(β1 →+ γ1, (β1)− ∧− γ2)], thus, [(α1, α2)] ≤ [(β1, β2) ⊃ (γ1, γ2)], that is,
[(α1, α2)] ≤ [(β1, β2)] ⊃ [(γ1, γ2)], i.e., L+ ./ L−/ ≡+ is a Browerian lattice. Similarly, using
the ⊂ definition, we can prove that L+ ./ L−/ ≡− is a Browerian lattice.

Now, let (α1, α2), (β1, β2) ∈ L+ ./ L−. Then, (α1, α2) ⊂ (β1, β2) = (α1 ∧+ (β2)+, β2 →−
α2) and (α1, α2) u ¬(β1, β2) = (α1, α2) u ((β2)+, (β1)−) = (α1 ∧+ (β2)+, α2 ∧− (β1)−),
that is, (α1, α2) ⊂ (β1, β2) ≡+ (α1, α2) u ¬(β1, β2). Also (α1, α2) ⊃ (β1, β2) = [α1 →+

β1, (α1)− ∧− β2] and ¬(α1, α2) u (β1, β2) = ((α2)+ ∧+ β1, (α1)− ∧− β2), that is, (α1, α2) ⊃
(β1, β2) ≡− ¬(α1, α2) u (β1, β2).

Therefore, L+ ./ L− = 〈L+ × L−,∧,∨,u,t,¬,⊃,⊂〉 is a non-involutive implicative
billatice. ut

P. Maia, U. Rivieccio, A. Jung 59

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Now we can construct B/≡+ ./ B/≡− with the operations:

For all ([a], [b]), ([c], [d]) ∈ B/≡+ ×B/≡−,

1. ([a]+, [b]−) ∨ ([c]+, [d]−) = ([a]+ t [c]+, [b]− u [d]−).
2. ([a]+, [b]−) ∧ ([c]+, [d]−) = ([a]+ u [c]+, [b]− t [d]−).
3. ([a]+, [b]−) t ([c]+, [d]−) = ([a]+ t [c]+, [b]− t [d]−).
4. ([a]+, [b]−) u ([c]+, [d]−) = ([a]+ u [c]+, [b]− u [d]−).
5. ¬([a]+, [b]−) = (([b]−)+, ([a]+)−).
6. ([a]+, [b]−) ⊃ ([c]+, [d]−) = ([a]+ →+ [c]+, ([a]+)− u [d]−).
7. ([a]+, [b]−) ⊂ ([c]+, [d]−) = ([a]+ u ([d]−)+, [b]− →− [d]−).

Theorem 8. Let B = 〈B,∧,∨,u,t,¬,→,←〉 a non-involutive implicative bilattice. Then,
ηB : B −→ B/≡+ ./ B/≡− defined for ηB(x) = ([x]+, [x]−) is an isomorphism.

Proof. We already know that ηB is injective, surjective and preserves ∧,∨,t,u,¬. It remains
to show ηB(x→ y) = ηB(x) ⊃ ηB(y) and ηB(x← y) = ηB(x) ⊂ ηB(y).

Indeed, ηB(x → y) = ([x → y]+, [x → y]−) = ([x]+ →+ [y]+, [x → y]−) and
ηB(x) ⊃ ηB(y) = ([x]+, [x]−) ⊃ ([y]+, [y]−) = ([x]+ →+ [y]+, ([x]+)− u [y]−) = ([x]+ →+

[y]+, ([¬x]− u [y]−) = ([x]+ →+ [y]+, [¬x u y]−). Then, ηB(x→ y) = ηB(x) ⊃ ηB(y).

Also, ηB(x ← y) = ([x ← y]+, [x ← y]−) = ([x ← y]+, [x]− →− [y]−) and ηB(x) ⊂
ηB(y) = ([x]+, [x]−) ⊂ ([y]+, [y]−) = ([xu¬y]+, [x]− →− [y]−). Then, ηB(x← y) = ηB(x) ⊂
ηB(y).

Therefore, ηB is an isomorphism. ut

5 Conclusion and future work

We provided equational presentations for the class of all non-involutive bilattices and the
subclasses corresponding to bilattices with an involutive negation, bilattices with implication
etc. For each of these we proved a representation theorem and a categorical equivalence for
non-involutive bilattices, that allows us to view any algebra and their morphism in the class
as a bilattice product of two lattices and their morphisms.

For future work we pretend to do a categorical equivalence for non-involutive implicative
bilattices and non-involutive implicative product bilattices and also a topological duality
for both. And characterize the congruences of non-involutive bilattices and non-involutive
implicative bilattices.

References

1. Arieli, Ofer, and Arnon Avron, ‘The value of the four values’, Artificial Intelligence, 102
(1998), 1, 97–141.

2. Belnap Jr, Nuel D, ‘A useful four-valued logic’, in Modern uses of multiple-valued logic,
Springer, 1977, pp. 5–37.

3. Bou, Félix, Ramon Jansana, and Umberto Rivieccio, ‘Varieties of interlaced bilattices’,
Algebra universalis, 66 (2011), 1-2, 115–141.

4. Bou, Félix, and Umberto Rivieccio, ‘The logic of distributive bilattices’, Logic Journal of
IGPL, 19 (2011), 1, 183–216.

60 Non-involutive bilattices

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



5. Cabrer, Leonardo Manuel, Andrew P.K. Craig, and Hilary A Priestley, ‘Product
representation for default bilattices: an application of natural duality theory’, Journal of Pure
and Applied Algebra, 219 (2015), 7, 2962–2988.

6. Fitting, Melvin, ‘Bilattices in logic programming’, in Multiple-Valued Logic, 1990., Proceedings
of the Twentieth International Symposium on, IEEE, 1990, pp. 238–246.

7. Ginsberg, Matthew L, ‘Multivalued logics: A uniform approach to reasoning in artificial
intelligence’, Computational intelligence, 4 (1988), 3, 265–316.

8. Jakl, Tomáš, Achim Jung, and Aleš Pultr, ‘Bitopology and four-valued logic’, in Lars
Birkedal, and Michael Mislove, (eds.), 32nd Conference on Mathematical Foundations of
Programming Semantics, 2016.

9. Jung, Achim, and M Andrew Moshier, ‘On the bitopological nature of stone duality’, School
of Computer Science Research Reports-University of Birmingham CSR, 13 (2006).

10. Jung, Achim, and Umberto Rivieccio, ‘Priestley duality for bilattices’, Studia Logica, 100
(2012), 1-2, 223–252.

11. Mobasher, B, D Pigozzi, G Slutzki, and G Voutsadakis, ‘A duality theory for bilattices’,
Algebra universalis, 43 (2000), 2-3, 109–125.

P. Maia, U. Rivieccio, A. Jung 61

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



62 Non-involutive bilattices

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Comparação de codificações para solução de
puzzles Sudoku via algoritmo DPLL

Savio Lopes Rabelo, Helio Henrique Barbosa Rocha, e Thiago Alves Rocha

Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Eixo
Tecnológico de Computação, Campus Maracanaú – CE – Brazil

saviorabelo.ti@gmail.com, hique.rocha@gmail.com, thiago.alves@ifce.edu.br

Resumo Na presente investigação, exemplos de puzzles Sudoku serão
codificados como problemas SAT. O propósito deste trabalho é avaliar
o desempenho do algoritmo DPLL para resolver puzzles Sudoku consi-
derando formas de codificação para sua solução: minimal e estendida. O
algoritmo e as codificações foram implementados na linguagem de pro-
gramação Python. Exemplos de entrada de jogos aleatórios foram con-
siderados. O tempo para solução do jogo pelo algoritmo pode depender,
além da codificação empregada, da configuração do mesmo.

Palavras-chave: lógica computacional, codificação SAT, algoritmo DPLL

1 Introdução

Sudoku é um puzzle combinatório baseado no posicionamento lógico de nú-
meros. Ainda que as suas regras possam ser consideradas simples, a sua resolução
pode se tornar um desafio intelectual. Na sua versão padrão, o jogo tem por ob-
jetivo a colocação dos números de 1 a 9 em cada uma das células vazias numa
grade de dimensão 9x9 (que contem 81 células), constituída por sub-grades de
dimensão 3x3 denominadas regiões [10]. Há, portanto, 9 regiões e cada região
contém 9 células. Inicialmente o quebra-cabeça está parcialmente preenchido,
contendo números inseridos em algumas células, de maneira a permitir uma in-
dução ou dedução dos números em células que estejam vazias. Em cada coluna,
linha e região, os números de 1 a 9 aparecem uma única vez.

Pela simplicidade de suas regras e também por ser membro de uma classe
de problemas de satisfação de restrições, o Sudoku tem sido objeto de muitos
estudos, em particular no que diz respeito às suas propriedades matemáticas e
algorítmicas, como por exemplo enumeração de possíveis grades de jogo [6,7]
e NP-completude da sua versão generalizada [18]. Além disso, vários métodos
foram utilizados para resolver o Sudoku: Formulações em problemas de satisfação
de restrições [17,15], métodos de busca [8], algoritmos genéticos [12] e o método
particle swarm optimization [14].

Uma maneira de resolver tais puzzles combinatórios consiste na sua mode-
lagem como um problema de satisfazibilidade (SAT) da lógica proposicional.
O problema SAT envolve a busca por uma atribuição de valores verdade que

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



torna verdadeira uma fórmula da lógica proposicional [16]. O SAT foi o primeiro
problema identificado como NP-Completo1, sendo ainda hoje um dos mais es-
tudados dessa classe. Destacam-se na literatura recente, trabalhos que tratam
de problemas SAT com o uso de hipergrafos. Foram evidenciadas em [2] novas
perspectivas sobre a representação de problemas SAT com base em hipergrafos
direcionados, além de um novo algoritmo tipo DPLL. É notório o mérito no
estudo destes problemas na medida em que resolvedores bem elaborados associ-
ados a codificações apropriadas favorecem a resolução de muitas instâncias úteis
em diversas áreas do conhecimento. O algoritmo DPLL frequentemente serve
como ponto de partida no desenvolvimento de métodos capazes de resolver de
maneira eficiente instâncias do SAT. Será empregado o algoritmo DPLL2 como
descrito em [16] e com escolha de literais feita de forma aleatória.

O principal objetivo deste trabalho é estudar a codificação de puzzles Su-
doku com fórmulas da lógica proposicional. É pretendido também comparar o
desempenho do algoritmo DPLL com codificações diferentes e instâncias distin-
tas do problema. Neste sentido, objetiva-se buscar a codificação mais eficiente
para o caso geral do problema: dada uma situação inicial observar qual codifica-
ção apresenta melhor comportamento. Ainda, visa-se avaliar, considerando casos
específicos, a importância da codificação para resolver de forma eficiente instân-
cias do problema. Assim sendo, a elucidação computacional de jogos Sudoku é
desenvolvida considerando duas etapas: sua codificação em forma normal con-
juntiva (FNC) com posterior resolução via algoritmo DPLL. São introduzidas
duas codificações diretas para o Sudoku [11]: codificação minimal e codificação
estendida. A codificação minimal é suficiente para caracterizar o jogo, enquanto
a codificação estendida acrescenta cláusulas excedentes para a codificação mini-
mal.

2 Codificações SAT para o problema Sudoku

A codificação minimal assegura que há pelo menos um número (entre 1 e 9)
em cada célula, e que cada número aparece no máximo uma vez em cada linha,
em cada coluna e em cada sub-grade 3x3. Considerando que os índices x,y e z
da variável booleana pxyz representam linha, coluna e número, respectivamente,
formalmente temos [11]:

“Há, pelo menos, um número em cada célula”:

9∧

x=1

9∧

y=1

9∨

z=1

pxyz, (1)

1 Por ser NP-completo, não se conhece algoritmo com tempo melhor (no pior caso)
que o exponencial.

2 O DPLL é reconhecidamente capaz de decidir corretamente se um conjunto de cláu-
sulas é satisfazível ou não e adequado por aceitar novas heurísticas para escolha de
literais quando implementado na resolução de problemas SAT

64 Comparação de codificações para solução de puzzles Sudoku via algoritmo DPLL

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



“Cada número aparece, no máximo, uma vez em cada linha”:
9∧

y=1

9∧

z=1

8∧

x=1

9∧

i=x+1

(¬pxyz ∨ ¬piyz), (2)

“Cada número aparece, no máximo, uma vez em cada coluna”:
9∧

x=1

9∧

z=1

8∧

y=1

9∧

i=y+1

(¬pxyz ∨ ¬pxiz), (3)

“Cada número aparece, no máximo, uma vez em cada sub-grade (3x3)”:
9∧

z=1

2∧

i=0

2∧

j=0

3∧

x=1

3∧

y=1

3∧

k=y+1

(¬p(3i+x)(3j+y)z ∨ ¬p(3i+x)(3j+k)z), (4)

9∧

z=1

2∧

i=0

2∧

j=0

3∧

x=1

3∧

y=1

3∧

k=x+1

3∧

l=1

(¬p(3i+x)(3j+y)z ∨ ¬p(3i+k)(3j+l)z). (5)

Na codificação minimal, a fórmula resultante terá 8829 cláusulas, sem contar as
cláusulas unitárias representando as células pré-preenchidas. Destas cláusulas,
81 cláusulas têm tamanho nove e as 8748 restantes possuem tamanho dois.

A codificação estendida assegura que cada entrada na grade possui exata-
mente um número, e o mesmo para cada linha, cada coluna e cada sub-grade
3x3. A codificação estendida inclui todas as cláusulas da codificação minimal,
bem como as seguintes restrições:

“Há, no máximo, um número em cada entrada”:
9∧

x=1

9∧

y=1

8∧

z=1

9∧

i=z+1

(¬pxyz ∨ ¬pxyi), (6)

“Cada número aparece pelo menos uma vez em cada linha”:
9∧

y=1

9∧

z=1

9∨

x=1

pxyz, (7)

“Cada número aparece pelo menos uma vez em cada coluna”:
9∧

x=1

9∧

z=1

9∨

y=1

pxyz, (8)

“Cada número aparece pelo menos uma vez em cada sub-grade (3 x 3)”:
9∨

z=1

2∧

i=0

2∧

j=0

3∧

x=1

3∧

y=1

p(3i+x)(3j+y)z. (9)

Na codificação estendida, a fórmula resultante possuirá 11988 cláusulas, des-
contadas as cláusulas unitárias representando as entradas pré-alocadas (contendo
números). Destas cláusulas, 324 têm tamanho nove e as 11664 restantes possuem
tamanho dois.

S. Rabelo, H. Rocha, T. Rocha 65

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



2.1 O algoritmo DPLL

O algoritmo DPLL (ou método Davis–Putnam–Logemann–Loveland) [3,4]
vem sendo implementado com os mais diversos métodos ou processos para solu-
ções de problemas [16]. Basicamente, uma valoração para uma fórmula fornecida
(na forma de um conjunto de cláusulas) deve ser construída. No início, todos os
átomos da fórmula apresentam um valor desconhecido para sua valoração. A
cada iteração do algoritmo (descrito no Algoritmo 1 [16]), um literal é escolhido,
ficando determinada sua valoração como sendo verdadeira. Caso esse literal seja
negativo, a valoração da atômica do literal é falsa. Uma vez valorada, a fórmula
é simplificada (Algoritmo 2 [16]) pela eliminação das cláusulas que contêm o
literal e pela eliminação da negação do literal das cláusulas restantes. Se essa
valoração satisfizer todas as cláusulas, tem-se uma valoração que satisfaz a fór-
mula inicial. Se alguma cláusula for falsificada, altera-se a escolha da valoração
para falso. Se nenhuma cláusula for falsificada, nem todas as cláusulas foram
satisfeitas, procede-se à próxima escolha de literal. O processo para quando uma
valoração for encontrada (fórmula satisfazível) ou quando não há mais átomos
para serem testados (fórmula insatisfazível). Para uma instância SAT, um algo-
ritmo completo é aquele que acha uma solução (ou prova que tal solução não
existe). O método DPLL apresentado abaixo é chamado de SAT-completo, ou
seja, ele sempre é capaz de decidir corretamente se um conjunto de cláusulas é
ou não é satisfazível.

Algoritmo 1: Algoritmo DPLL(F).
Entrada: Uma fórmula F no formato CNF.
Saída: verdadeiro, se F é satisfazível ou falso, caso contrário.

1 Fazer v(p) = * para todo átomo p;
2 F’= Simplifica(F);
3 se F’ = ∅ então
4 retorna verdadeiro;
5 senão se F’ contém uma cláusula vazia (falsa) então
6 retorna falso;
7 fim
8 Escolha um literal L com v(L) = *;
9 se DPPL(F’ ∪ L) = verdadeiro então

10 retorna verdadeiro;
11 senão se DPPL(F’ ∪ ¬L) = verdadeiro então
12 retorna verdadeiro;
13 senão
14 retorna falso;
15 fim

66 Comparação de codificações para solução de puzzles Sudoku via algoritmo DPLL

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Algoritmo 2: Algoritmo Simplifica(F).
Entrada: Uma fórmula F no formato CNF.
Saída: Uma fórmula na forma clausal equivalente a F porém mais simples.

1 enquanto F possui alguma cláusula unitária L faça
2 Apaga de F todas cláusulas que contém L;
3 Apaga ¬L das cláusulas restantes;
4 fim
5 retorna F

3 Metodologia

Inicialmente, uma amostra de jogo escolhida ao acaso serve como entrada no
programa. Neste momento, apenas a codificação minimal é considerada. Uma
vez que o jogo tenha sido resolvido3, cada célula contendo um número é sequen-
cialmente eliminada. A cada eliminação de célula (cumulativamente) o jogo é
novamente resolvido.

Devemos observar um ponto4 a partir do qual a solução torna-se dispendiosa
(mais lenta). Neste ponto deve se guardar a quantidade de células preenchi-
das. Em seguida, outros exemplos de jogos contendo aproximadamente a mesma
quantidade de células preenchidas são analisados em relação ao tempo de solu-
ção. Nesta etapa os resultados obtidos pelas codificações minimal e estendida
serão contrastados quanto ao seu impacto na solução.

Ao longo deste trabalho empregamos o algoritmo DPLL5 que trata fórmu-
las no formato clausal (chamada de Forma Normal Conjuntiva). Esta restrição
visa facilitar a implementação de resolvedores sem perda de generalidade6. O
problema SAT consiste em determinar se uma fórmula na FNC é satisfazível ou
não.

Os arquivos com instâncias de jogos aleatórias foram obtidos on-line7, sendo
posteriormente convertidos no formato padrão CNF. Os algoritmos 1 e 2 supra-
mencionados [16] foram implementados na linguagem de programação Python
versão 2.7.11, bem como as codificações SAT e as entradas de problemas Su-
doku. Para efeito de reprodutibilidade, os requisitos mínimos de hardware são:
Processador Intel Core i3, 250 MB de espaço livre em disco e 4 GB de memoria
RAM. Os requisitos mínimos de software incluem sistema operacional Windows
10.

3 As 81 células preenchidas com números conforme as regras do Sudoku.
4 Tendo em vista a quantidade de células que restam na grade.
5 O literal é escolhido aleatoriamente.
6 É demonstrável que qualquer fórmula da lógica proposicional clássica tem uma fór-
mula equivalente no formato clausal.

7 http://www.sudoku.name/

S. Rabelo, H. Rocha, T. Rocha 67

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



4 Resultados e Discussões

Tendo em vista os resultado obtidos quando da solução de um exemplo e jogo,
as células são eliminadas uma a uma em sequência. Após esta eliminação o jogo
é novamente resolvido, e, desta vez, o tempo para a sua resolução é registrado.

O resultado deste processo, a partir do ponto em que a grade do jogo encontrava-
se preenchida com 62 células pré-preenchidas, está ilustrado na Fig. 1. Em cada
eliminação foram realizadas 5 computações de tempo. Aparentemente, consi-
derando apenas a codificação minimal, uma grande quantidade de células pré-
preenchidas implica em uma menor variabilidade e tempo de solução. A partir
do momento em que a grade passa a conter 55 números, o tempo para soluci-
onar o jogo começa a sofrer aumento considerável acompanhado de uma maior
variabilidade. Para a instância considerada, com 52 restrições não se fez possível
resolver o jogo em menos de 11 minutos.

0

200

400

600

800

1000

# células pré-preenchidas

te
m

po
 d

e 
re

so
lu

çã
o 

(s
)

X62 X61 X60 X59 X58 X57 X56 X55 X54 X53 X52

Figura 1: Tempo de resolução do jogo, usando codificação minimal (Eqs.1-5), em
termos do número de células pré-preenchidas.

Foram tomadas aleatoriamente outras três instâncias de jogo diferentes quanto
à quantidade de células pré-preenchidas. Estas amostras foram computadas con-
siderando cinco situações, sendo a primeira apenas com codificação minimal e as
posteriores contendo, além da codificação minimal, as codificações estendidas,
acrescentadas acumulativamente uma por vez. Com isto, é pretendido analisar

68 Comparação de codificações para solução de puzzles Sudoku via algoritmo DPLL

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



o possível impacto da redundância no desempenho associado ao programa. Os
resultados desta etapa encontram-se condensados na Tab. 1.

Tabela 1: Tempo médio (s) para resolução dos jogos.
restrições

# células Eqs.(1)-(5) Eqs.(1)-(6) Eqs.(1)-(7) Eqs.(1)-(8) Eqs.(1)-(9)
pré-preenchidas

54 4,062 6,422 6,360 6,547 6,563
53 3,703 6,297 6,359 6,359 6,516
45 3,688 6,247 6,203 6,344 6,344

Na Tab. 1, temos a quantidade de células pré-preenchidas em cada uma das
três amostras analisadas e as restrições observadas, em que se considerou desde
a codificação minimal (Eqs.1-5) até o acréscimo de todas as codificações esten-
didas (Eqs.1-9). Cada computação foi repetida sete vezes, sendo apresentado o
valor médio resultante. Há duas observações sobre os resultados obtidos: o tempo
de solução do jogo aumenta à medida que são incluídas as codificações estendi-
das, e a solução para um jogo com menos células pré-preenchidas é obtida num
tempo menor. Além disto, para uma mesma amostra, o acréscimo das codifica-
ções estendidas não apresenta alterações significativas de tempo. Tal constatação
aparentemente contrasta com as observações iniciais: quanto menos células pré-
preenchidas, mais tempo se levaria para solucionar um problema. É sugerido que
a quantidade de células pré-preenchidas, apesar de claramente importante, tem
dominância possivelmente limitada sobre o resultado do experimento.

Continuando, insistiu-se na redução da quantidade de células pré-preenchidas
alimentadas. Foi selecionado um jogo com apenas 22 células pré-preenchidas.
Neste caso, a solução envolvendo unicamente a codificação minimal (Eqs.1-5)
não se mostrou suficiente para obtenção de uma resposta no tempo estipulado
de 20 minutos. No entanto, envolvendo a codificação estendida completa (Eqs.1-
9), o mesmo jogo foi resolvido num tempo médio de 6.3 segundos.

5 Conclusão e Trabalhos Futuros

Neste trabalho estudamos o impacto da codificação em relação ao tempo de
resposta de problemas SAT na forma de amostras de puzzles Sudoku com em-
prego do algoritmo DPLL para sua resolução. Embora não tenha sido verificado
neste trabalho, é possível que, em geral, um jogo possua mais de uma solução.
A unicidade da resolução de instâncias Sodoku é estudada em [13], sendo tal
requisito implementado em [9], conforme descrito em [10]. A princípio, a quan-
tidade parece influenciar no tempo de reposta obtido. Em conformidade com os
experimentos realizados, jogos com menor quantidade de células preenchidas po-
dem ser resolvidos em menor tempo que jogos com maior quantidade de células
pré-preenchidas. Além disso, uma redução ainda maior da quantidade de células

S. Rabelo, H. Rocha, T. Rocha 69

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



pré-preenchidas supostamente evidencia a importância da redundância da codifi-
cação estendida no contexto da resolução do problema. Portanto, a configuração
dos jogos parece exercer forte influência sobre o tempo em que os mesmos são
elucidados. Isso foi analisado em outros trabalhos, como [5] e [19].

Para investigações posteriores, pretende-se fazer uma comparação com varia-
ções de heurísticas de escolha de literais no DPLL [16] e comparações com outras
abordagens, a exemplo de algoritmos genéticos [12], particle swarm optimization
[14] e simulated annealing [1].

Referências

1. Chi, E. C., Lange, K. Techniques for Solving Sudoku Puzzles. CoRR,
abs/1203.2295, 2012.

2. Croitoru, C.; Croitoru, M. Combinatorial Results on Directed Hypergraphs for the
SAT Problem. Graph Structures for Knowledge Representation and Reasoning:
4th International Workshop, GKR 2015, Buenos Aires, Argentina, July 25, 2015,
Revised Selected Papers. Cham: Springer International Publishing, 2015. p. 72–88.

3. Davis, M.; Putnam, H. A Computing Procedure for Quantification Theory. J.
ACM, v. 7, n. 3, p. 201–215, 1960.

4. Davis, M.; Logemann, G.; Loveland, D. W. A machine program for theorem-
proving. Commun. ACM, v. 5, n. 7, p. 394–397, 1962.

5. Ercsey-Ravasz, M.; Toroczkai, Z. The Chaos Within Sudoku. CoRR,
abs/1208.0370, 2012.

6. Felgenhauer, B.; Jarvis, F. Enumerating possible Sudoku grids. 2005. Disponível
em: http://www.afjarvis.staff.shef.ac.uk/sudoku/.

7. Felgenhauer, B.; Jarvis, F. Mathematics of Sudoku I. 2006. Disponível em: http:
//www.afjarvis.staff.shef.ac.uk/sudoku/.

8. Geem, Z. W. Harmony Search Algorithm for Solving Sudoku. In: . KnowledgeBased
Intelligent Information and Engineering Systems: 11th International Conference,
KES 2007, XVII Italian Workshop on Neural Networks, Vietri sul Mare, Italy,
September 12-14, 2007. Proceedings, Part I. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007. p. 371–378.

9. Jain, S., Shakher, C. Mathematical and C Programming Approach for Sudoku
Game. Journal of Game Theory, v. 3, n. 1, p. 1–6, 2014.

10. Lee, W. Programming Sudoku. New York: Apress, 2006. (Technology in action).
11. Lynce, I.; Ouaknine, J. Sudoku as a SAT Problem. In: In Proc. of the Ninth Inter-

national Symposium on Artificial Intelligence and Mathematics: Springer, 2006.
12. Mantere, T.; Koljonen, J. Solving, Rating and Generating Sudoku Puzzles with

GA. In: IEEE Congress on Evolutionary Computation: IEEE, 2007. p.1382–1389.
13. McGuire, G., Tugemann, B. and Civario, G. There Is No 16-Clue Sudoku: Solving

the Sudoku Minimum Number of Clues Problem via Hitting Set Enumeration.
Experimental Mathematics, v. 23, n. 2, p. 190–217, 2014.

14. Moraglio, A.; Chio, C. D.; Poli, R. Geometric Particle Swarm Optimisation. In:
Genetic Programming: 10th European Conference, EuroGP 2007, Valencia, Spain,
April 11-13, 2007. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007. p. 125–136.

15. O’Sullivan, B.; Horan, J. Generating and Solving Logic Puzzles Through Cons-
traint Satisfaction. In: Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada,
2007. p. 1974–1975.

70 Comparação de codificações para solução de puzzles Sudoku via algoritmo DPLL

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



16. Silva, F. da; Melo, A. de; Finger, M. Lógica para Computação. São Paulo: Thomson
Pioneira, 2006.

17. Simonis, H. Sudoku as a Constraint Problem. In: In Proc. 4th Int. Workshop on
Modelling and Reformulating Constraint Satisfaction Problems, 2005. p. 13–27.

18. Yato, T.; Seta, T. Complexity and completeness of finding another solution and its
application to puzzles. IEICE Trans Fundam Electron Commun Comput Sci (Inst
Electron Inf Commun Eng), E86-A, n. 5, p. 1052–1060, 2003.

19. Zhai, G., Zhang, J. Solving Sudoku Puzzles Based on Customized Information
Entropy. International Journal of Hybrid Information Technology, v. 6, p. 77-92,
2013.

S. Rabelo, H. Rocha, T. Rocha 71

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



72 Comparação de codificações para solução de puzzles Sudoku via algoritmo DPLL

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Evolving Negative Application Conditions

Andrei Costa, Rodrigo Machado and Leila Ribeiro

Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

Email: {acosta, rma, leila}@inf.ufrgs.br

Abstract. Graph grammars are formal, graph-based modeling lan-
guages that provide at the same time a visual interpretation for systems
and a precise definition for concepts such as conflicts between transfor-
mations. Graph grammars are commonly extended with concepts that
make the expression of certain patterns more convenient. One example is
the use of negative application conditions in rules (NACs), which allow
the modeler to express that a given rule should not be applied under a
given circumstance. Another example of extension to graph grammars
is the framework of second order graph grammars (SOGGs). They were
proposed to represent programmed evolution of models and introduce
second-order rules that modify the structure of (first-order) graph trans-
formation rules. However, the current definition of second-order rule ap-
plication does not support the transformation of (first-order) rules that
are equipped with NACs. This is an important limitation since NACs are
widely used in practice. In this paper, we give an introductory approach
to integrate the framework of second order graph grammars considering
graph grammars with negative application conditions in rules.

1 Introduction

Graph grammars [2] are a rule-based language for modeling complex systems [9].
The main idea is that of a graph, representing the system state, being modified
by a set of rewriting rules through transformations. This feature provides a
visual and intuitive modeling of the system, while a precise semantics allows the
development of several analysis techniques on these grammars [3].

The state modifications are based on finding a match for the left-hand side
of a rule in the state and replacing it by the induced rule modification. However,
this process can be increased with some additional features, for example, negative
application conditions (NACs). Those are a very useful expressive tool to model
situations forbidden in a transformation. The transformations are only allowed
when the state do not have the forbidden elements specified by the NACs of that
production.

Another common task in systems is evolution. A graph grammar modeler
can do it manually, however the effects of the embedded modifications can be-
come very complex. To model a programmed evolution would be useful for the
development of analysis techniques. In [7], system evolutions are modeled as

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



productions of higher level order. However, to be useful, this methodology must
consider features that are frequently used in practice.

Nowadays there are many tools to model graph grammars, each with a dif-
ferent focus. Support for programmable evolution is, however, still very limited.
The Verigraph [1] tool, which is used to support this work, provides a frame-
work to work with graph transformation systems with support for second order
transformations.

In this work we propose an extension of the second order framework that
adds mechanisms to evolve NACs on an evolution of productions. Particularly, a
NAC can be evolved by two different reasons: (1) the NAC evolution is induced
by the production evolution; and (2) that NACs can be created and deleted.
Both proposals should coexist in order to comprehend the entire second order
transformation with first-order NACs definition.

This text is organized as follows: the section 2 shows the basis of first order
graph grammars; the section 3 analyses the modifications on NACs when evolv-
ing productions; the section 4 introduces the evolution of NACs in the context
of second order productions; and the section 5 concludes this paper.

2 Graph Grammars

In this section we review the basic definitions of algebraic graph transformation
according to the double pushout approach [4]. The definitions that follow are
standard in the area and can be found in books such as [3].

Definition 1 (graph) A graph G = (V,E, s, t) consists of a set V of nodes
(vertices), a set E of edges, and two functions, s, t : E → V , the source and
target functions.

Definition 2 (graph morphism) Given two graphs, G1 = (V1, E1, s1, t1) and
G2 = (V2, E2, s2, t2), a graph morphism f : G1 → G2 is a pair (fV , fE) of two
total functions fV : V1 → V2 and fE : E1 → E2 such that fV ◦ s1 = s2 ◦ fE and
fV ◦ t1 = t2 ◦ fE.

Definition 3 (typed graph) A typed graph GTG is a graph morphism t : G→
TG, where the source graph G is interpreted as an instance graph and the target
graph TG is interpreted as a type graph. The morphism t itself is referred as a
typing morphism.

Definition 4 (typed graph morphism) Given two typed graphs GTG1 , GTG2

with respective typing morphisms type1 : G1 → TG and type2 : G2 → TG, a
typed graph morphism is a triple (type1, type2, f) where f : G1 → G2 is a graph
morphism, such that type2 ◦ f = type1.

The category with typed graphs as objects and typed graph morphisms as
morphisms is known as GraphsTG.

74 Evolving Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Definition 5 (typed graph production) A typed graph production p = L
l←−

K
r−→ R is a span of typed graph morphisms l and r, such that l and r are

monomorphisms (injective). Productions are also referred as (typed) graph rules
or (typed) rules.

The L, K and R typed graphs are known as left-hand, interface and right-
hand graphs, respectively. It may be the case that the same production can be
applied in various ways over the same typed graph.

The definition of transformation (in the DPO approach) uses two categorical
operations called pushout and pushout complement. The GraphsTG category
is closed under pushouts. However, pushout complements do not exist for all
diagrams.

Definition 6 (match, typed graph transformation) Given a production

p = L
l←− K

r−→ R and a typed graph G, as in the diagram below. A match
is an arbitrary typed graph morphism from L to G. A typed graph transforma-

tion G
p,m
==⇒ H from G to H exists if the diagram below can be constructed, where

(1) and (2) are pushouts in the category GraphsTG.

L

(1)m

��

Koo
loo // r //

k
��

R

(2) m′

��

G
q

Doo
l′
oo //

r′
// H
p

The applicability of a production p over graph G using match m is given
by the existence of morphisms k and l′ such that square (1) is a pushout. The
pair (k, l′) is called a pushout complement of (l,m), and there are two conditions
that must hold to ensure its existence. The dangling condition fails when the
match m deletes a node and does not delete all incident edges to this node. The
identification condition fails when the match m identifies a deleted element with
any other deleted or preserved element. If both the dangling and identification
conditions succeed, then there is a pushout complement for (l,m).

Productions can also be incremented with a set of NACs [5]. A NAC is a typed
graph morphism from left or right side of a production to a typed graph with
the forbid elements. A NAC is satisfied if it does not disable the transformation.

Definition 7 (NAC, production with NACs) A negative application con-
dition NAC(n) is an arbitrary typed graph morphism n : L → N . A NAC
n : L→ N is satisfied with respect to a match m : L→ G, written G � NAC(n),
if and only if @q : N → G such that q is injective and q ◦ n = m. A produc-
tion with NACs (p,NACp) is composed by a production p and a set of NACs
(NACp). A match m : L→ G satisfies NACp if and only if it satisfies all single
NACs m � NAC(ni),∀i ∈ I.

Ni~~
q

~~

G L
m
oo

ni

OO

A. Costa, R. Machado, L. Ribeiro 75

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Definition 8 (Typed graph grammar with NACs) A typed graph gram-
mar with NACs is a tuple (TG, G0, P ) where TG is the type graph, G0 (initial
graph) is a typed graph over TG and P is a set of productions with NACs.

Example 1 (Pacman grammar). Figure 1 shows a graph grammar
(TG,G0, P ) that models a simplified version of the pacman game, where
P = {movePacman,moveGhost, killPacman, killGhost, getBerry,dropBerry}.
The type graph 1(b) allows four kind of nodes: ghost, pacman, berry and block
(filled circle). The edges indicate the position of the elements: ghosts, pacman
and berries can be found in blocks, and pacman can carry berries. The initial
graph, in 1(a), is an arbitrary typed graph specifying the initial state. The
productions are shown in the remaining figures, each of them depicted by their
three typed graphs (L, K and R, in this order). The morphisms l : K → L
and r : K → R between the graphs are omitted but can be recovered from the
position of the elements in each figure. In this simplified pacman game, ghosts
and pacmans move freely over the blocks, according to rules 1(c) and 1(d). The
pacman can obtain a berry, and occasionally drop it in anywhere, as shown in
rules rules 1(g) and 1(h). When a ghost and a pacman are on the same block,
two rules may be applied. If the pacman has a berry then it kills the ghost,
rule 1(f). Otherwise, the ghost kills the pacman, rule 1(e). Notice that this rule
requires to check if pacman does not have a berry, and therefore a NAC is
necessary.

3 Evolution

Changes on graph grammars are common, specially when modeling systems that
are always evolving. The capture of these changes can be very useful in terms
of systems analysis. As a first approach, we will focus on production transfor-
mations. Productions can evolve in various senses: a new preserved item can be
added, an item that is deleted can be preserved, a new item can be created, etc.

In order to establish a valid morphism between productions, we introduce
the rule morphism definition [7]. The evolution is presented as a transformation
from the left to the right side of the diagram.

Definition 9 (rule morphism and evolution) A rule morphism between
productions P = (l, r) and P ′ = (l′, r′) is a triple (fl, fk, fr) of typed graph
morphisms between the corresponding graphs of two rules, such that the dia-
gram below commutes. A rule morphism is mono/epi/isomorphic if their three
morphisms are also.

L

=fl
��

K

=fk
��

ooloo // r //

��

R

fr
��

L′ K ′oo
l′
oo //

r′
// R′

An evolution is a span of monomorphic rule morphisms.

76 Evolving Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



pacman ghost

ghostberry

(a) Initial Graph

pacman

ghost berry

(b) Type Graph

pacman pacman pacman

(c) movePacman

ghost ghost ghost

(d) moveGhost

NAC

ghost pacman

berry

ghost pacman ghost ghost

(e) killPacman

ghost pacman

berry

pacman

berry

pacman

berry

(f) killGhost

pacman

berry

pacman

berry

pacman

berry

(g) getBerry

pacman

berry

pacman

berry

pacman

berry

(h) dropBerry

Fig. 1. Example of Graph Grammar - Pacman

R R′lroo
rr // R′′

K

>>

��

K ′

==

lkoo
rk //

}}

K ′′

<<

||

L L′lloo
rl // L′′

In [8], an algorithm to analyse conflicts before and after evolutions was pro-
posed. This algorithm gives a way to analyse the impact of the evolution to the
system before it occurs. However, these techniques are not considering the case
when the evolved production has NACs. It is very important to model this sit-
uations too, because NACs are a widely utilized model feature. We propose an

A. Costa, R. Machado, L. Ribeiro 77

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



extension for evolution considering NACs on the left-hand of the left production
(NACs on right-hand side can be shifted to the left-hand).

Definition 10 (evolution with NACs) An evolution with NACs is a span of
monomorphic rule morphisms, where the left-hand rule has a NAC: ∃n : L→ N .

R R′lroo
rr // R′′

K

r >>

l
~~

K ′

==

lkoo
rk //

||

K ′′
r′′ <<

l′′

{{

L

n

��

L′

��

lloo
rl // L′′

��

N N ′oo // N ′′

Example 2 (Evolution of the rule killPacman).
Suppose an evolution on the rule killPacman 1(e) that adds an extra pre

condition to this rule, that is two ghosts are needed to kill a pacman. The NAC
of the original rule forbids the applying when the pacman has a berry, in this case,
the evolved NAC must forbid the same situation, but considering two ghosts, as
well as the pre condition.

In the Figure 2, this evolution is presented. Note that it is evolving from
top to bottom. The names of the graphs represent their objects in the evolution
diagram, the morphisms are omitted due to lack of space but can be deduced
from the position of the elements.

N

ghost

berry

pacman

L

ghost pacman

K

ghost

R

ghost

N ′

ghost

berry

pacman

L′

ghost pacman

K′

ghost

R′

ghost

N ′′

ghost

ghost

berry

pacman

L′′

ghost

ghost

pacman

K′′

ghost

ghost R′′

ghost

ghost

Fig. 2. Evolution with NACs Example

We define that the evolution of a NAC (N ← N ′ → N ′′) is induced by the
DPO transformation of the production (L← L′ → L′′) with match n. However,
this transformation may not exist, in these cases we consider the resulting NAC
as true (always satisfied). We interpret it as: the forbidden situations by N are
not possible to occur with the new left-hand graph L′′.

78 Evolving Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



4 Second Order Productions

Second order productions, as defined in [7], model transformations of productions
(without NACs). Since they are defined over DPO diagrams, the mechanics of
them are almost identic to the first order productions. However, some divergent
details are highlighted below.

In order to maintain the validity of the first-order productions, this trans-
formation cannot: (i) delete some element in K, but not in L or R, in that
case a additional gluing condition was proposed, called dangling span; and (ii)
generate some non-monomorphic production, to forbid this situations a set of
minimal safety second order NACs are automatically added to each second order
production.

Definition 11 (second order transformation) Given a span of rule mor-
phisms (L{L,K,R} ← K{L,K,R} → R{L,K,R}) and a first order production
p = (L ← K → R), as in the diagram below. A second order match is a
monomorphic rule morphism from L{L,K,R} to p. Let l = (LL ← KL → RL),
k = (LK ← KK → RK) and r = (LR ← KR → RR), a second order trans-

formation is defined in the diagram below, where L
l,m1
==⇒ L′′, K

k,m2
===⇒ K ′′

and R
r,m3
===⇒ R′′ are typed graph transformations and (L′ ← K ′ → R′) and

(L′′ ← K ′′ → R′′) are valid typed graph productions.

LR

m3

��

KR

��

oo // RR

��

LK

m2

��

<<

||

KK

��

;;

oo //

{{

RK

��

;;

{{

LL

m1

��

KL

��

oo // RL

��

R R′oo // R′′

K

;;

{{

K ′
::

oo //

zz

K ′′
;;

{{

L L′oo // L′′

Example 3 (Second order transformation).
Considering a second order production that has in the pre condition a rule

that preserves a ghost in a block, and as pos condition it adds a new preserved
ghost on the same block. Figure 3 shows a simplified view of this second-order
production, where the first-order productions are collapsed.

(LL, LK , LR)

ghost

(KL, KK , KR)

ghost

(RL, RK , RR)

ghostghost

Fig. 3. Second-Order Production that adds a preserved ghost

This second order production has a match on the rule killPacman 1(e), this
transformation is the same that was presented in the Example 2.

A. Costa, R. Machado, L. Ribeiro 79

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



4.1 Negative Application Conditions Evolution

The down plane of the second order transformation diagram is an evolution
as presented in the section 3. In that section we defined how the NACs on L
would evolve, but when we work with second order productions (that induces
production transformations) we are able to define transformations of the set of
NACs. However, dealing with that situation can be very complex, for that, we
divide it in three cases, when the second order production: creates NACs; deletes
NACs; and changes NACs. All the definitions in this section point to extensions
on the second order transformation diagram.

Create Considering the second order transformation diagram, we model a cre-
ation of NAC on the left-hand of the right side of the second order production
(RL). It means that a second order transformation creates NACs, as Figure 4
shows. However, we need to translate the modeled NAC, on RL, to the left-side
of the generated first order production (L′′), this operation may return not an
unique NAC, but a set of NACs. It occurs because the forbidden elements of a
NAC can be collapsed with the elements of L′′ that are not in RL, and all this
potential collapsing can not be captured by only one NAC. This operation is
known in the literature as shift NAC over morphism [6].

LL

m1

��

KL

��

oo // RL
||

��

N ′′
a

�� �� ��

L L′oo // L′′

vv
|| ��

N1
b N2

b N3
b . . .

Fig. 4. Second Order Transformation Adding NACs

Example 4 (Creating NACs).
An example of that occurs on pacman grammar. Following the diagram in the

Figure 4 and the graphs in the Figure 5. Considers a second order production
that all objects are empty, except by a creation NAC (N ′′

a ). Perhaps that it
can be applied in various first-order productions, because empty graphs have
morphism to any other graph.

Suppose that it is applied on a production that has as pre-conditions the
graph L (movePacman). The set of created NACs Nb must forbid all situations
where N ′′

a occurs, but it can not assume that the pacman in L is the same that
in N ′′

a . In this way, 12 NACs must be created to capture all possible forbid-
den situations, we show only the less and the most collapsed in N1

b and N11
b ,

respectively.

80 Evolving Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



pacman

L

pacman ghost

N ′′
a

pacman pacmanghost

N1
b

pacman ghost

N11
b

Fig. 5. Example of Second Order Transformation Adding NACs

Delete To model the deletion of NACs, a second order production must contain
NACs on the left-hand of the left side (LL). The second order transformation can
be very straightforward setting all NACs matched as true. However, is necessary
to define how is the match between second order NACs and first order NACs.
Basically, it can be done by an extension of the definition of rule morphism. As
consequence, once this NACs are on the left side of the second order production,
they are included on pre-conditions of the second order production.

To define this match is not simple, suppose that the second order production
has two NACs, as in Figure 6, we have two possibilities for matches from N1+N2

to N ′
1 + N ′

2 + N ′
3: (1) to set them as arbitrary morphisms, and then we could

have unexpected deletions, because it will can occur for all NACs N ′
j which

have the subgraph that Ni forbids; and (2) to set that these matches needs to
be isomorphic out of the image ni, thus we force that only exactly as second
order production NACs (at least by the LL subgraph) can be matched, and
consequently if two NACs are matched, they are isomorphic.

N1

�� �� $$

N2

=

�� �� ��

LLn2

oo
n1tt

m1

��

LK

m2

��

oo // LR

m3

��

N ′
1 N ′

2 N ′
3 L

n′
3oo

n′
2

jj

n′
1

jj Koo // R

Fig. 6. Match of first order productions with NACs

Modify Differently that was proposed early in this work, by modify we mean a
programmed semantic modification of the NAC, it differs for transpose a NAC
without change their forbid situations, as proposed in the section 3. In this
context, we could generalize creation and deletion into a unique system, that
also supports transposing and modifications. However, we need to formalize a
very complex system to deal with it, in which their benefits are non usual when
evolving graph grammars, change the NAC semantic is not usual, we think that
delete and create sequentially is the nearest from the usual modeling flow of
systems with NACs.

A. Costa, R. Machado, L. Ribeiro 81

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



5 Conclusions

This paper presents an ongoing work on an extension of the second order trans-
formation. Particularly, the evolution of the first-order NACs proposed allows
three characteristics: to maintain the forbidden situations; to model new forbid-
den cases; and to model disabling of forbidden cases.

The evolution with NACs diagram is implemented in Verigraph tool, which
facilitates tests and generation of examples for our study. However, we still must
prove that the translated NACs forbid the same situations (in a modified context)
of the original NACs. Furthermore, we must also verify that, when there is no
DPO transformation, to set as true the NAC is a valid semantic operation.

The extension for the second order production definition is in current work.
The new definitions must match the expected behavior when modeling second
order productions. For example, in current definitions, a second order production
that creates a new NAC, depending of the context, can generate more than one
NAC in a transformation. Another example occurs on deletion, that depending
of the rule morphism definition, it can have a very different semantic operation.

Acknowledgments

The authors would like to acknowledge the brazilian agency CNPq for support
in the form of financial aid (VeriTes project).

References

1. Andrei Costa, Jonas Bezerra, Guilherme Azzi, Leonardo Marques, Thiago Rafael
Becker, Ricardo Gabriel Herdt, and Rodrigo Machado. Verigraph: a system for
specification and analysis of graph grammars. SBMF 2016, page to appear, 2016.

2. Hartmut Ehrig. Introduction to the algebraic theory of graph grammars (a survey),
pages 1–69. Springer Berlin Heidelberg, Berlin, Heidelberg, 1979.

3. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Transformation (Monographs in Theoretical Computer Science.
An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

4. Hartmut Ehrig, Michael Pfender, and Hans-Jürgen Schneider. Graph-grammars: An
algebraic approach. In Switching and Automata Theory, 1973. SWAT ’08. IEEE
Conference Record of 14th Annual Symposium on, pages 167–180, Oct 1973.

5. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with neg-
ative application conditions. Fundamenta Informaticae, 26(3, 4):287–313, 1996.

6. Leen Lambers. Certifying rule-based models using graph transformation. PhD thesis,
Berlin Institute of Technology, 2009.

7. Rodrigo Machado. Higher-order graph rewriting systems. PhD thesis, Instituto de
Informática - Universidade Federal do Rio Grande do Sul, 2012.

8. Rodrigo Machado, Leila Ribeiro, and Reiko Heckel. Rule-based transformation of
graph rewriting rules: Towards higher-order graph grammars. Theoretical Computer
Science, 594:1–23, 2015.

9. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation: Volume I. Foundations. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 1997.

82 Evolving Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



A note on bimachines

Rodrigo de Souza⋆

UFRPE, Recife, Brazil
rodrigo.npmsouza@ufrpe.br

Abstract. In the seventies, Schützenberger and Eilenberg introduced
the notion of bimachine as a deterministic machine for the realisation
of rational functions. We discuss a reworking of this classical model,
which we call look-ahead bimachine. Our variant can realise any rational
function with a deterministic reading of the input word, and every new
state during this reading is explicitly computed by the machine with a
forward scanning of the remaining of the input.

Keywords: rational function, transducer, bimachine

1 Introduction

In this communication we propose a variant of the bimachine model which, as the
bimachines, is powerful enough to realise the whole family of rational functions;
however, contrary to the classical model, the computations of our machine consist
of explicit sequences of forward and backward moves over the input word.

Transducers, or automata with outputs, are two-tape automata which realise
relations betweens words; the family of such relations, the rational relations,
forms one of the cornerstones of the theory of automata, as Eilenberg wrote in
his treatise [6]. As classical automata, a transducer reads input words from left to
right, but every transition bears, besides the letter being read, an output word:
in every successful computation reading the word u, the concatenation of these
outputs is a word in the image of u (in the relation realised by the transducer).

Besides their mathematical richness, transducers have been applied exten-
sively as models and algorithms for real-world problems, in different domains,
such as natural language processing [11], image processing [1, 5] and bioinforma-
tics [3]. A modern account of the subject, as well as a reference for the terminol-
ogy and concepts which appear freely, with no previous formal definition in this
text (due to space constraints), can be found in Jacques Sakarovitch’s book [13].

A particular rôle is played by the single-valued, or functional, transducers,
that is, the ones which realise word-to-word functions – the rational functions.
The rational functions are the subject of this communication, and the problem
addressed here is the conception of deterministic models for the realisation of
such functions. The interest of this question lies in the fact that, unlike classi-
cal automata, functional transducers cannot be determinised. This comes from

⋆ This research is supported by the project Problemas estruturais em modelos formais
de Computação, Edital MCTI/CNPq/Universal 2014.

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



a deep result of Choffrut [4], which characterises the sequential functions, the
ones which can be realised by a sequential1 transducer (= the underlying input
automaton is deterministic). In other words, not every rational function can be
realised by a deterministic, sequential left-to-right reading of the input word. A
very simple example is the function f over the two-letter alphabet A = {a, b}
which, for every u ∈ A+, strips the trailing a’s of u, that is:2

uf =

{
1 if u has no occurrence of b’s

xb if u is of form xban
(1)

This functions can be realised by a small (four-states) transducer, but by Chof-
frut’s Theorem it is not sequential.

Thus, different machineries must be developed if one wants to computes (the
images of) a rational function with a deterministic reading of the input word.
There are two classical approaches in the literature; one of them is the following
theorem due to Elgot and Mezei [7], which combines two kinds of sequential
transducers or, more precisely, the functions realised by them: left sequential
transducers – these are the aforementioned sequential transducers, which read
the input words from left to right – and the right sequential ones, where the
deterministic reading of the input word is from right to left:

Theorem 1 (Elgot-Mezei 1965). A function from a free monoid A∗ to a free
monoid B∗ is rational if, and only if, it is the composition of a left sequential
function with a right sequential function.

Elgot-Mezei’s Theorem says that for every rational function f , from A∗ to B∗,
one can define two sequential machines: the first one reads deterministically, from
left to right, input words in A∗ and, for every u ∈ A∗, it writes a word x in some
intermediate free monoid C∗; the second machine reads x from right to left, also
deterministically, and writes a word in B∗. The composition of both functions
is f .3 Such decomposition can be constructed effectively from a transducer T
realising f . Indeed, the original proof is structured as follows: the left-to-right
transducer outputs, after reading u, a description of the successful computations
of T reading u – this is the intermediate word x (in this description, the letters
of C represent sets of transitions of T ); next, the right-to-left reading of x writes
the outputs of precisely one of the computations encoded in this word.

An older construction was proposed by Schützenberger in 1961 [16], and later
reworked by Eilenberg in [6], where it is called bimachine:

1 As in [10] (see Remark 5), we prefer to call such transducers sequential, avoiding the
traditional term subsequential.

2 The empty word is represented by 1; it is the unity element of the free monoid A∗.
Also note that we use the prefix notation for functions: the name of the function is
written after the argument.

3 The other direction follows from a more general property: the rational relations are
closed by composition.

84 A note on bimachines

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Theorem 2 (Schützenberger-Eilenberg 1974). A function from a free mo-
noid A∗ to a free monoid B∗ is rational if, and only if, it is the behaviour of a
bimachine.

As in Elgot-Mezei’s Theorem, the definition of bimachine involves a left-to-right
transducer L and a right-to-left one R;4 but here, both read somewhat simul-
taneously the input word u ∈ A∗. Roughly, in every step of the reading, the
configuration of the bimachine consists of a position j of u and a pair (p, q) of
states of L and R respectively. The machine outputs a word, which depends on
(p, q) and the letter a being read, goes to position j+1 and changes the states as
follows: p goes to p · a – the new state of L after the reading of a, and q goes to
q′ = x · i, where i is the initial state of R, x is the suffix of u starting at position
j + 1, and x · i is the left action representing the right-to-left reading of R.

Of course one can describe, by induction on the length of u, the sequence
of these configurations, and thus the corresponding output word. But this is a
purely formal expedient, not a mechanical one: the new states q′ of R are not
explicitly computed by a sequence of deterministic moves of the bimachine.

See Section 2 for the formal definition. Details can be found in [2] or [6]. For
more recent work (applications and extensions) on bimachines, see [12, 15].

Our main motivation to introduce a new form of deterministic realisation for
the rational functions stems from the remark that in both classical construc-
tions the reading of the input word u does not consist of a pure sequence of
deterministic moves over u, for some extra resource, so to speak, is involved: in
Elgot-Mezei’s Theorem a new word, different from the input word, must be read,
and in the bimachine construction, the computation of the new states of R does
not correspond, as we said, to an explicit sequence of moves – this would require
a rewind to the right edge of the word, followed by the sequence of moves of R
from right to left until position (which must be found in some way) j + 1.

In our proposal, which we call look-ahead bimachine – LAB for short – both
issues are addressed in the following way: the reading of the input word u pro-
ceeds from left to right, and it is a sequence of “look-aheads”; each look-ahead
is a deterministic sequence of moves which scans some special prefix of the re-
maining of the input word; these moves (more precisely, their outputs) are all
the machine needs to compute the output word. Thus the main result of this
communication is the following statement:

Theorem 3. A function from a free monoid A∗ to a free monoid B∗ is rational
if, and only if, it is the behaviour of a look-ahead bimachine.

Before going into the details, let us note that Theorem 3 can be seen as a spe-
cialisation for rational functions of the following property of two-way transducers
established by Engelfriet and Hoogeboom [8] and, what is more important for
us, of a new, more structural proof for it we presented in [17]:

Theorem 4 (Engelfriet-Hoogeboom 2001). Functional two-way transduc-
ers can be effectively turned into equivalent sequential two-way transducers.

4 Both concepts are indeed related. In [2], bimachines are used to prove Elgot-Mezei’s
Theorem.

R. Souza 85

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



As we said, such a conversion does not hold for one-way transducers. Our proof
for Theorem 4 consists of a construction we call pathfinder transducer : a sequen-
tial two-way transducer which simulates deterministically the moves of a func-
tional two-way transducer T . Starting from T , we define two sequential two-way
transducers, a left and a right pathfinder in our terminology. Left pathfinders
have been implicitly defined by Hopcroft and Ullman to prove that languages
realised by certain automata (two-way balloon automata) are closed under the
inverse of left sequential functions [9]. In [17], left and right pathfinders are used
together to find, for every input word u, the sequence of moves of a successful
computation of T reading u (and thus the corresponding output word).

Maybe the best way to grasp the definition of the look-ahead bimachine
model is to put it in parallel with the classical notion we have just explained.
Like bimachines, a LAB can be seen as a combination of two automata, a left-to-
right L and a right-to-left R; the output function is defined for pairs of states as
well. But it has an additional component: a left pathfinder, the aforementioned
construct we used to prove Theorem 4. This is what allow it to “discover” the
new configuration, the one it must go for the reading of position j + 1.

More precisely, for every position j of the input word, the LAB does a “look-
ahead”: a deterministic scanning of the suffix starting at j. This scanning is a
sequence of forward moves, and next a sequence of backward ones, which comes
back to j. But this departing position cannot be stored by the machine. Now,
the left pathfinder comes in handy: it simulates backwards the computations of
R until some position where the (unique) successful one can be distinguished
(such a position always exist); next, it goes back to j, by using the property that
the computations “meet” precisely in this position.

We also note that in [17] left pathfinders are defined over unambiguous trans-
ducers. The latter are previously constructed (starting from the original two-way
transducer) with the lexicographic covering construction we defined in [14] to
decompose finite-valued transducers. In such a covering, a larger automaton is
constructed, whose computations project on those of the departing automaton,
and from it one can extract an automaton containing precisely the smallest suc-
cessful computations for some lexicographical ordering put on the transitions.
Here, we describe a direct construction of the pathfinder (and thus of the LAB),
for an arbitrary transducer, not necessarily unambiguous – the lexicographic
selection of successful computations is somewhat embodied in the construction.

In the sequel, we shall present a minimum of formal notation regarding au-
tomata and transducers, and next discuss our proof of Theorem 2. Some claims
(propositions), describing simple properties of the constructions being described,
will be stated without proof.

2 Automata and transducers

We shall implicitly consider that every input word is surrounded by endmarks.
This allows in particular to detected its initial and the final positions.

86 A note on bimachines

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



One-way automata, or simply automata, are acceptors which read the input
tape from left to right; in one-way transducers the reading is made in two tapes,
also from left to right, and pairs of words are accepted. Both consist of a finite
set Q of states, sets I, T ⊆ Q of initial and final states, respectively, and the set
E of transitions. In an automaton over the alphabet A, E ⊆ Q×A×Q, that is,
transitions are labelled by letters; in a transducer over the alphabets A and B,
the labels are pairs in A×B∗: a letter in the first tape and a word in the second.5

As usual, automata and transducers can be depicted as labelled directed graphs;
see Figure 1 for an example.

The behaviour of an automaton A is the subset of A∗ consisting of the labels
of the successful computations of6 A. A computation represents the reading of
a word: it is a sequence of consecutive transitions, c : p0

a1−−→ p1
a2−−→ . . .

aℓ−−→ pℓ;
its label is a1 . . . aℓ, and c is successful if p0 ∈ I and pℓ ∈ T . For transducers, the
label of a computation is the pair obtained by the componentwise concatenation
of the labels of the transitions, and the behaviour is a subset of A∗×B∗.

From a “dynamic” point of view, the behaviour of a transducer is a relation
from A∗ to B∗ which sends every word u ∈ A∗ to the set of words x ∈ B∗ such
that (u, x) is the label of some successful computation — the image of u. In this
setting, we say that a computation labelled by (u, x) reads u and writes x, and
that u is its input and x its output. The transducer is functional is every image
has at most one element.

p q r s
a |1 a |a

a |1
a |ab |b

b |b
b |b

b |b

a |1

p q r s
a

a

a
ab

b

b

b

a

Fig. 1. A functional transducer T over {a, b}∗×{a, b}∗ and its underlying input automa-
ton. Initial and final states are indicated by ingoing and outgoing arrows, respectively.
In T , every transition is labelled by a pair (x, y), where x is a letter in {a, b} and y is
a word over this alphabet; such a pair is represented as x|y. The behaviour of T is the
function f defined in (1).

5 In general, transducers are labelled by pairs of words, elements of the product monoid
A∗×B∗; but for the finitely-valued transducers we are dealing with, it is not restrictive
to impose that the first component is always a letter [13]. Such a transducer is called
a nondeterministic generalised sequential machine in some references.

6 A rational subset of A∗.

R. Souza 87

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The notation below is the same as in [17]. Let A be an automaton. We
denote by Adet the deterministic automaton obtained from A by the subset
construction, and by A̺

det the automaton obtained by reversing A and applying
the subset construction. For every deterministic automata, we denote by a dot
the extended transition function – this is a right action of A∗ over the states of
the automaton. Thus, the state reached from the initial state I of Adet with the
reading of the word x is I · x. Symmetrically, see A̺

det as an automaton which
reads from right to left7 starting at its initial state J , and for every y ∈ A∗

denote by y · J the state of A̺
det reached with the reading of the reversal of y.

Now, · is a left action of A∗ over the states of A̺
det. The following proposition is

a simple property of deterministic automata which relates the subsets I · x and
y · J to computations of A:

Proposition 1. For every word x, I · x is the set of ends (states of A) of
computations of A which start at some initial state and are labelled by x, and
y · J is the set of states q of A such that there is a computation labelled by y
from q to some final state.

A bimachine over the alphabets A and B consists of two sets of states, P
and Q, two initial states, i ∈ P and j ∈ Q, a right and a left action of A∗

over P and Q, respectively (the transition functions), and an “output function”
γ : Q×A×P → B∗, which can be extended to a function Q×A∗×P → B∗

by: (q, 1, p)γ = 1, (q, xa, p)γ = (q, x, a · p)γ(q · x, a, p)γ, for a ∈ A, x ∈ A∗.
For every input word u ∈ A∗, the image of u by (the function realised by) the
bimachine is the word (i, u, j)γ ∈ B∗. The mechanical description of the reading
of u sketched in the Introduction is equivalent to the following formal fact, which
can be established by induction on the length of u: put u = a1a2 . . . an, where
every ai is a letter; the output of u is the concatenation

(i, a1, a2a3 . . . an · j) γ (i · a1, a2, a3a4 . . . an · j) γ
. . . (i · a1a2 . . . an−1, an, j) γ

Lexicographic orderings of computations are described in [14] as a method
to construct unambiguous automata. First, an ordering <l is put in the set
E of transitions of the automaton, and is extended on E∗ and thus on the
computations of A in the following way: c = e1e2 . . . elel+1 . . . en and d =
e′1e

′
2 . . . e

′
le

′
l+1 . . . e

′
m (ei, e

′
j ∈ E for 1 ≤ i ≤ n and 1 ≤ j ≤ m) are such that

c <l d iff c and d have the same label (thus m = n) and there exists l such that
ei = e′i for 1 ≤ i ≤ l− 1 and el <l e

′
l. Thus, E is viewed as an alphabet, and two

computations as words over this alphabet; two computations are comparable iff
they have the same label. In the look-ahead bimachine construction, for every
input word exactly one successful computation of the departing transducer is
“simulated”: the smallest one by the ordering <l.

7 Although A̺
det is a legitimate one-way automaton, which recognises the reverse of

the words accepted by A.

88 A note on bimachines

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



3 Look-ahead bimachines

Now we shall proof both directions of Theorem 3.

From transducers to look-ahead bimachines

Let T be a functional transducer. As we said, our LAB for T , that we denote
by L, is based on a left pathfinder transducer, in the terminology of [17]. But
in our construction, T is an arbitrary transducer, not necessarily unambiguous,
as required in [17]. Actually, the preliminary construction of an unambiguous
transducer made in [17] is embedded in the definition of L. In other words, our
construction selects, for every input letter being read, the smallest transition of
T according to a lexicographic ordering <l put on the set of computations.

Let A be the underlying input automaton of T . The LAB L has two sets of
states: the output states, and the scanning states.

The former consists of pairs (R,S) of states of Adet and A̺
det, respectively;

only in transitions starting at these pairs the transducer writes an output. As in
classical bimachines, when scanning the position j of the input word u = a1 . . . aℓ,
the configuration of L is a triple

(Rj , aj, Sj)

and the main invariant of the computations of L is that it represents particular
sets of states of T :

Rj = I · (a1 . . . aj−1), Sj = (aj+1 . . . aℓ) · J

(I and J are the initial states of Adet and A̺
det, respectively).

The reading of the letter aj consists in writing an output word and construct-
ing the new configuration (Rj+1, aj+1, Sj+1). For the first component, L simply
follows a transition of Adet:

Rj+1 = Rj · aj
The trick part is the construction of Sj+1, which we explain at the end of this
section. Let us at first describe how outputs are written. It depends of a state

qj ∈ Rj ∩ aj · Sj

which is also stored by L. Its meaning is expressed in the following proposition:

Proposition 2. The states in Rj ∩ aj · Sj are exactly the ends of the prefixes
labelled by a1 . . . aj−1 of the successful computations of T labelled by a1 . . . aℓ.

Thus, qj is the end of one of these prefixes, and the construction of qj+1 from
qj must assure that the resulting computation is the smallest one according to
the lexicographic ordering <l. In other words, L must chose j-th the transition
of T of the computation being simulated. This choice is based on the set

X = Rj+1 ∩ Sj

R. Souza 89

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



which by Proposition 2 is the set of ends of prefixes labelled by a1 . . . aj of the
successful computations of T . Now, the transition to be taken is the smallest
one according to <l in the set

{qj
aj |x−−−→ q : q ∈ X}

The end of this transition is the new state qj+1 and its output is written by L.
Now we explain the construction of the new set Sj+1. If the input word u is

in the domain of T , then in A̺
det there are transitions of form

X1
aj+1−−−→ Sj , . . . , Xt

aj+1−−−→ Sj

and exactly one of the Xi’s is Sj+1. It may happen that there is exactly one

Xi
aj+1−−−→ Sj , and then Sj+1 = Xi. Otherwise, L enters the scanning set of states

to ”discover” the aimed Xi – these states correspond to the left pathfinder
construction, which we recall below.

The bimachine L scans a prefix of aj+1 . . . aℓ, in two parts: at first, it performs
a sequence of forward moves, and next, a sequence of backward moves, which
allows to come back to position j. Let us at first explain the forward moves made
by L. They are based on the automaton C obtained by reversing A̺

det again and
applying the subset construction. For every Xi, 1 ≤ i ≤ t, denote by C(Xi) the
part of C accessible from Xi; consider the product of automata

C(X1)×. . .×C(Xt)

which is also a deterministic automaton. Starting from state X1× . . . Xt and
position j + 1, the pathfinder simulates the deterministic C(X1)× . . .×C(Xt),
that is: it scans successively the positions j + 2, j + 3, . . . of the input word u
and visits the states

(X1 · aj+2)×. . .×(Xt · aj+2), (X1 · aj+2aj+3)×. . .×(Xt · aj+2aj+3), . . . (2)

Here we can state the main property which allows to discover Sj+1:

Proposition 3. Either at some position k > j+1 exactly one of the components
of (X1 · aj+2 . . . ak)×. . .×(Xt · aj+2 . . . ak) is not empty, or the forward scanning
reaches the end of u (k = ℓ), and J (the initial state of A̺

det) is contained in
exactly one of these components.

This fact is a consequence of the unambiguity of A̺
det. In other words, at some

point, the pathfinder reaches a special set of C – the nonempty component, or a
component containing J – which we call the target set. The target set contains
precisely the states of A̺

det which reach Sj+1 after the right-to-left reading from
position k to j + 1 in A̺

det:

Proposition 4. Let X be the target set reached by the forward moves starting
at position j + 1, and Y ∈ X. Then, Sj+1 = (aj+2 . . . ak) · Y .

90 A note on bimachines

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



After finding the target set, the pathfinder goes to the sequence of backward
moves. They are based on the product A̺

det×A̺
det, and every pair (Y, Z) in the

deterministic backward reading is such that: Y comes from an arbitrary fixed
state belonging to the target set; Z comes from an arbitrary fixed state belonging
to some other set (among the ones reached by the forward moves). Is follows from
the fact that A̺

det is deterministic that:

Proposition 5. For every position greater than j + 1, Y 6= Z, and Y = Z in
position j + 1.

This allows to find the position j + 1 again, and Sj+1, by Proposition 4.
This closes the description of the scanning phase, but not of L: first of all,

the initial configuration (R1, a1, S1) must be computed. This is easy: the set R1

is I, and to find S1 = u · J , L goes to the right edge of u, and comes back,
applying the transitions of A̺

det.

From look-ahead bimachines to transducers

Here we just sketch the proof that, given a LAB L, one can construct an equiva-
lent functional transducer T . In general, the obtained transducer is not sequen-
tial: this is due to the nondeterministic ”guessings” embodied in its definition.

Every state of T is a pair (q, P ) formed by an output state q of L and P
a function from the output states to sets of pairs of scanning states. In every
computation

c : (q1, P1)
a1|x1−−−−→ (q2, P2)

a2|x2−−−−→ . . .
aℓ|xℓ−−−−→ (qℓ+1, Pℓ+1)

of T , every (pj , Pj) projects, in the first component, in the output state of L
reached with the reading of a1a2 . . . aj−1. The function Pj aims to capture the
forward-backward scanning of segments arar+1 . . . as, with r ≤ j ≤ s: for every
output state p, the image of p, by Pj , is the set of pairs of states reading aj
in all the possible scannings starting at p. Every pair with equal components
represents the ”closing” of some scanning, and is not stored.

In order to be successful, c must represent a sequence of well-formed forward-
backward scannings. This means that the image of every output state by Pℓ+1 is
the empty set (“all scannings have been closed”); such functions mark the final
states of T .

Acknowledgements The author thanks Wilson Rosa for his endless disposi-
tion to push people to do research in theoretical Computer Science, and the
anonymous referees for their valuable remarks, which helped him to improve the
manuscript.

References

1. Albert, J., Kari, J.: Digital image compression. In: Droste, M., Kuich, W.,
Vogler, H. (eds.) Handbook of Weighted Automata, pp. 453–479. Springer

R. Souza 91

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Berlin Heidelberg, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-01492-5_11

2. Berstel, J.: Transductions and context-free languages. Teubner Verlag (1979)
3. Bradley, R.K., Holmes, I.: Transducers: an emerging probabilistic framework for

modeling indels on trees. Bioinformatics (Oxford, England) 23(23), 3258–62 (dec
2007), http://bioinformatics.oxfordjournals.org/cgi/content/long/23/23/
3258

4. Choffrut, C.: Une caracterisation des fonctions sequentielles et des fonctions sous-
sequentielles en tant que relations rationnelles. Theoretical Computer Science 5(3),
325–337 (Dec 1977), http://dx.doi.org/10.1016/0304-3975(77)90049-4

5. Culik, K., Kari, J.: Digital images and formal languages. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages: Volume 3 Beyond Words, pp.
599–616. Springer Berlin Heidelberg, Berlin, Heidelberg (1997), http://dx.doi.
org/10.1007/978-3-642-59126-6_10

6. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Orlando,
FL, USA (1974)

7. Elgot, C.C., Mezei, J.E.: On Relations Defined by Generalized Finite Automata.
IBM Journal of Research and Development 9(1), 47–68 (1965)

8. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-
way finite-state transducers. ACM Trans. Comput. Logic 2(2), 216–254 (2001),
http://dx.doi.org/10.1145/371316.371512

9. Hopcroft, J.E., Ullman, J.D.: An approach to a unified theory of automata. In:
8th Annual Symposium on Switching and Automata Theory (SWAT 1967). pp.
140–147. IEEE Computer Society (1967)

10. Lombardy, S., Sakarovitch, J.: Sequential? Theoretical Computer Science 356(1-2),
224–244 (May 2006), http://dx.doi.org/10.1016/j.tcs.2006.01.028

11. Mohri, M., Pereira, F., Riley, M.: Speech recognition with weighted finite-state
transducers. In: Benesty, J., Sondhi, M.M., Huang, Y.A. (eds.) Springer Handbook
of Speech Processing, pp. 559–584. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008), http://dx.doi.org/10.1007/978-3-540-49127-9_28

12. Rhodes, J., Silva, P.V.: Turing machines and bimachines. Theoretical Computer
Science 400(1-3), 182–224 (2008)

13. Sakarovitch, J.: Elements of Automata Theory. Cambdrige University Press (2009)
14. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k -valued transduc-

ers. Theory Comput. Syst. 47(3), 758–785 (2010), http://dx.doi.org/10.1007/
s00224-009-9206-6

15. Santean, N., Yu, S.: Nondeterministic bimachines and rational relations with fi-
nite codomain. Fundam. Inf. 73(1,2), 237–264 (Apr 2006), http://dl.acm.org/
citation.cfm?id=2369408.2369429

16. Schützenberger, M.P.: A remark on finite transducers. Information and Control
4(2-3), 185–196 (1961), http://dx.doi.org/10.1016/S0019-9958(61)80006-5

17. de Souza, R.: Uniformisation of two-way transducers. In: Language and Automata
Theory and Applications - 7th International Conference, LATA 2013, Bilbao,
Spain, April 2-5, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7810,
pp. 547–558. Springer (2013), http://dx.doi.org/10.1007/978-3-642-37064-9_
48

92 A note on bimachines

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



A Rewriting Logic Semantics for the Generalized
Substitution Language

Christiano Braga1, David Deharbe2,3, Anamaria Moreira4 and Narciso Martı́-Oliet5

1 Universidade Federal Fluminense,
2 ClearSy System Engineering

3 Universidade Federal do Rio Grande do Norte,
4 Universidade Federal do Rio de Janeiro,
5 Universidad Complutense de Madrid

Abstract. The B Method is a leading technique to specify refinements and reason
about them. Essentially, refinements are captured as invariants that must hold on
the transition system induced by a B machine specification. In this paper we give
the first steps to the addition of temporal logic-based reachability analysis of the
state transition systems induced by a B specification to the B method. We formal-
ize the semantics of the Generalized Substitution Language, a normal form that
all B specifications can be translated to. Rewriting Logic is our semantic frame-
work of choice as not only it provides a natural framework to specify operational
semantics but also the Rewriting Logic system Maude allows for many automatic
verification procedures such as term search, narrowing search and model checking
Linear Temporal Logic formulae.

1 Introduction

The B method [1] is one of the most popular refinement techniques to develop and reason
about component-based software. Essentially, it transforms substitutions and invariants
that specify a B machine, described in the Abstract Machine Notation, into propositions
that must be valid. A refinement is an invariant that preserves the specification of the
abstract machine. For instance, it must not be the case that the invariant of a refinement
breaks the initialization of the abstract machine. The Generalized Substitution Language
(GSL) is a core language in the B method where all B machine specifications can be
transformed to.

Rewriting Logic [9] has been shown as a quite natural semantic framework [8] for
many specification languages. The Maude system [5], an implementation of Rewriting
Logic, provides many automated verification procedures such as search, narrowing, Lin-
ear Temporal Logic model checking and, more recently, Temporal Logic of Rewriting
model checking [2]. As a first step towards endowing the B method with the analysis
techniques available in the Maude system, we propose a Rewriting Logic semantics for
GSL. This semantics captures quite naturally GSL’s operational meaning, that is, in-
duces a finite-state transition system, and is at the same time symbolically executable
in Maude. Moreover, the translation from the Abstract Machine Notation to GSL can
be quite directly represented by an equational theory. Therefore, a term, denoting a B

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



machine, can be analyzed, using the aforementioned techniques, by first being reduced
to its GSL form.

The contribution of this paper is three-fold: (i) an operational semantics for GSL;
(ii) a rewriting logic semantics for GSL where transitions from the operational one are
identified with rewrites and (iii) a prototype executable environment for the Abstract
Machine Notation in Maude.

Related work. GSL is presented in [1] with a weakest precondition (WP) semantics.
Most of the work on B and GSL relies on this semantics. An interesting example is the
work of Dunne in [7], which includes additional information concerning the variables
in scope at a substitution to solve some delicate issues that restrict what can be stated in
B due to limitations of the pure WP semantics. On the other hand, some related work
proposing the embedding of B into other formalisms with strong tool support, such as
Isabelle/HOL, can be found in the literature [3,6]. As in the current research, the pur-
pose of those works is combining strengths of both worlds, to achieve further proof or
animation goals. On a more theoretical line, but also with similar goals, the work in [12]
proposes a prospective value semantics to define the effect of GSL substitutions on val-
ues and expressions. The meaning of a computation, specified in GSL, is given in terms
of the values of an expression, if the computation is carried out. In the current paper we
contribute to this line of work by discussing GSL operational semantics, its rewriting
logic semantics, using Maude as the specification language for Rewriting Logic theories,
and a prototype execution environment in the Maude system. We also discuss search on
the narrowing relation induced by the rewrite theory that represents our GSL operational
semantics.

Plan of the paper. Section 2 introduces GSL through its Structural Operational Se-
mantics (SOS). Section 3 informally recalls the Maude language and exemplifies how
narrowing works in the Maude system. Section 4 discusses the Rewriting Logic seman-
tics framework for GSL. Section 5 concludes this paper with our final remarks and points
to future work.

2 GSL structural operational semantics

The Generalized Substitution Language (GSL) is a core language in the B method where
all B machine specifications can be normalized to. Its grammar is specified by the fol-
lowing BNF description,

Subst ::= skip |
Var := Exp |
Pred | Subst |
Subst [] Subst |
Pred ==> Subst |
@ Var . Subst

where Subst denotes the syntactical class for GSL substitutions, Var denotes variable
identifiers, Exp denotes integer arithmetic expressions and Pred denotes Boolean ex-
pressions. The informal meaning of GSL is as follows. The skip construction is a GSL

94 A Rewriting Logic Semantics for the Generalized Substitution Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



program which halts normally. Simple assignment is a binary operation x := v that as-
signs the value in the second operand to the variable denoted by the first operand in the
memory. The precondition substitution P | S behaves as substitution S in the current
memory if predicate P holds and aborts otherwise. Substitution S1 [] S2 is the non-
deterministic choice between S1 or S2. Guarded substitution P ==> S behaves as S if
P is true or normally aborts otherwise. Finally, the unbounded choice @x.S substitution
chooses some value, say n, and replaces symbol x by n in S avoiding name clashes that
may arise. (Note that, although this is logically sound, it creates problems for its execu-
tion with rewriting as we have an unbounded variable on the right-hand side of the rule.
We discuss this executability issue further in Section 3.)

Sto = (Var 7→fin N)

−→⊆ (Subst × Sto)× ((Subst × Sto) ∪ {abort})

E, sto −→∗ n
v := E, sto −→ skip, update(sto, v, n)

(simple)

P, sto −→∗ true
P | S, sto −→ S, sto

(pre 1)
P, sto −→∗ false

P | S, sto −→ abort
(pre 2)

(bchoice 1) S1 [] S2, sto −→ S1, sto (bchoice 2) S1 [] S2, sto −→ S2, sto

P, sto −→∗ true
P ==> S, sto −→ S, sto

(guard 1)
P, sto −→∗ false

P ==> S, sto −→ skip, sto
(guard 2)

(uchoice) @v.S, sto −→ S[n/v], sto if v 6∈ var(sto), for some n.

Fig. 1. Structural operational semantics rules for GSL. Let v ∈ Var , E ∈ Exp, sto, sto′ ∈ Sto,
update : Sto × Var × N → Sto, var : Sto → 2Var , n ∈ N, P ∈ Pred , and S, S′ ∈ Subst .
The expression S[n/v] denotes the replacement of all free occurrences of variable v by n in
substitution S. The symbol −→∗ denotes the reflexive-transitive closure of relation −→.

3 The Maude language

In order to model a system in Rewriting Logic, that is, to specify such a system in Maude,
its static part (state structure) and its dynamics (state transitions) are distinguished. The
static part is specified by means of an equational theory (many-sorted, order-sorted or
membership equational logic), while the dynamics are specified by means of rules. Com-
putation in a transition system is then precisely captured by the term rewriting relation
using those rules, where terms represent states of the given system.

The distinction between the static part and the dynamic part is reflected in Maude by
means of functional and system modules. Functional modules in Maude correspond to
equational theories (Σ,E) which are assumed to be Church-Rosser (confluent and sort

C. Braga, D. Deharbe, A. Moreira, N. Martí-Oliet 95

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



decreasing) and terminating. Equations are used to define functions over static data as
well as properties of states. Usually the equation set E is the union of a set A of struc-
tural axioms (such as associativity, commutativity, or identity), also known as equational
attributes, for which matching algorithms exist in Maude, and a set E′ of equations that
are Church-Rosser and terminating modulo A.

System modules in Maude correspond to rewrite theories (Σ,A ∪ E′, R) where
rewriting with R is performed modulo the equations A ∪ E′. Moreover, the rules R
must be coherent with respect to the equations E′ modulo A. Coherence means that the
interleaving of rewriting with rules and rewriting with equations will not loose rewrite
computations, that is, failing to perform a rewrite that would otherwise have been pos-
sible before an equational deduction step was taken. By assuming coherence, Maude
always reduces to canonical form using E before applying any rule in R.

Narrowing in Maude Narrowing is a generalization of term rewriting that allows free
variables in terms (as in logic programming) and replaces pattern matching by unifi-
cation in order to (non-deterministically) reduce these terms. Narrowing was originally
introduced as a mechanism for solving equational unification problems. It was later gen-
eralized to solve the more general problem of symbolic reachability.

Example 1. Consider, for example, the following specification, borrowed from [4], for
a vending machine to buy apples (a) or cakes (c) with dollars ($) and/or quarters (q).
A module named NARROWING-VENDING-MACHINE is introduced. It declares sorts (that
can be understood as sets) Coin, Item, Marking and State where the sort Coin is
included in sort Money. Elements of sort Money are constructed by operators empty

and by juxtaposition of coins (that is, elements of sort Coin). The states of the vending
machine are denoted by juxtaposed money and items with operator < > around it. Now,
the machine behaves non-deterministically by either selling a (c)ake or an (a)pple and
it the latter case also returning a coin. This is specified by rules buy-c and buy-a,
respectively. The fact that four (q)uarters can be identified with a dollar ($) is specified
by equation change.

1 mod NARROWING−VENDING−MACHINE is
2 sorts Coin Item Marking Money State .
3 subsort Coin<Money .
4 op empty :−>Money .
5 op : Money Money−>Money [assoc comm id: empty] .
6 subsort Money Item<Marking .
7 op : Marking Marking−>Marking [assoc comm id: empty] .
8 op< > : Marking−> State .
9 ops $ q :−> Coin .

10 ops a c :−> Item .
11 var M : Marking .
12 rl [buy−c] :<M $> =><M c> .
13 rl [buy−a] :<M $> =><M a q> .
14 eq [change] : q q q q = $ [variant] .
15 endm

One can use the narrowing search command to answer the question: Is there any
combination of one or more coins that returns exactly an apple and a cake? This can be
done by searching for states that are reachable from one specified as a term < M:Money

> and match the desired pattern at the end.

96 A Rewriting Logic Semantics for the Generalized Substitution Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



1 Maude> (search [1] in NARROWING−VENDING−MACHINE :<M:Money> ˜>∗< a c> .)
2 Solution 1
3 M:Money−−> $ q q q
4 No more solutions.

Narrowing executability requirements Narrowing reachability in Maude needs the
following additional requirements together with the usual executability properties for
Maude modules. Let mod(Σ,G ∪ E ∪ Ax , R)endm be an order-sorted system module
where R is a set of rewrite rules specified with the rl keyword or crl when the rewrite
rule is conditional,Ax is a set of commonly occurring axioms,E is a set of finite variant
equations specified with the eq keyword and the attribute variant such that E ∪ Ax
has a finite and complete E ∪ Ax-unification algorithm (using the notion of variant
generation [4, Section 12.9], where the equations to be used in the generation process
are annotated with the variant attribute in the Maude specification), and G are the
remaining equations specified with the eq or ceq keywords. Furthermore, the transition
rules R must satisfy the following conditions:

– Conditional rules specified with the crl keyword are not taken into account, i.e.,
there may be conditional rewrite rules in the system module but they will not be
used for narrowing.

– A rule’s lefthand side pattern cannot be a single variable.
– The rules are E ∪Ax-coherent and topmost (so that rewriting is always done at the

top of the term).

Then narrowing is a complete deductive method for solving existential reachability ques-
tions of the form ∃ #»xt( #»x )→∗ t′( #»x ) in the sense that the formula holds forR if and only
if there is a narrowing sequence t ∗R,E∪Ax u such that u and t have anE∪Ax -unifier.

4 GSL semantics in Rewriting Logic

In this section we propose a conditional rewriting logic semantics for GSL (see Fig. 2).
We interpret the transition relation as a rewrite relation. In essence, for each transition
rule t in the SOS semantics there exists an homonymous conditional rewrite rule in
rewriting logic semantics, such that

P
γ −→ γ′

(t)
crl[t] : γ ⇒ γ′ if P

where γ, γ′ are configurations of the SOS specification, and P represents the premisses
of t. The deterministic fragment of GSL (simple assignment, pre-condition and guarded
substitution) is specified as equations whilst rules specify the non-deterministic one
(bounded and unbounded choice). Let S be an equational theory representing sets Sto,
X be an equational theory representing the evaluations of GSL expressions in the con-
text of a store, andP an equational theory representing the evaluation of GSL predicates
in the context of a store.

C. Braga, D. Deharbe, A. Moreira, N. Martí-Oliet 97

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Expressions
eq [expr1 ] : (v+ E, (v 7→ n)sto) = (n + E, (v 7→ n)sto)
eq [expr2 ] : (n, sto) = n

Simple assignment
ceq [simple] : (v := E, sto) = (skip, sto′) if (E, sto) = n ∧ sto′ := update(sto, v, n)

Pre-condition
ceq [pre1 ] : (P | S, sto) = (S, sto) if (P, sto) = true

ceq [pre2 ] : (P | S, sto) = abort if (P, sto) = false

Bounded choice
rl [bchoice] : (S1 [] S2, sto)⇒ (S1, sto)

Guarded substitution
ceq [guard1 ] : (P ==> S, sto) = (S, sto) if (P, sto) = true

ceq [guard2 ] : (P ==> S, sto) = (skip, sto) if (P, sto) = false

Unbounded choice
crl [uchoice] : (@v.S, sto)⇒ (S[n/v], sto) if v 6∈ var(sto)

Fig. 2. Conditional rewriting logic semantics for GSL.

The conditional rewriting logic semantics for GSL in Fig. 2 could be directly exe-
cuted in Maude if not for rule uchoice. Variablen is free in its right-hand side. Narrowing
can be used to execute such a rule by searching for a value for n that replaces v in a (GSL)
substitution S.

To cope with the requirements for narrowing executability in Maude described in
Section 3, we now define a rewriting logic semantics for GSL (see Fig. 3), based on
Plotkin’s SCD machines [10], which is also topmost, all rules are unconditional, the
pattern on the left-hand side of each rule is not a single variable and the rules are Ax-
coherent, with respect to associativity and commutativity, since there are no critical pairs
as equations and rules give semantics to different GSL constructions.

Proposition 1 states that conditional and unconditional rewriting logic semantics for
GSL are equivalent modulo unfolding of rewrites in the condition of rules, denoted ρ.

Proposition 1. Let C be the conditional rewriting logic semantics for GSL and U the
unconditional one.

C ` t→ t′ ⇐⇒ U ` t→/ρ t
′

The intuition is that matched or ground conditions of applied equations in C become
the first projection of a triple of sort Conf.6 Their canonical form is then used to appro-

6 Since expressions or predicates do not need context to be evaluated, a triple is sufficient to
evaluate assignments, pre-conditions and guarded substitutions. A stack, as in [10], would be
necessary only if expressions or predicates allowed substitutions as sub-terms that would re-
quire further contexts to be evaluated.

98 A Rewriting Logic Semantics for the Generalized Substitution Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Expressions
eq [expr ] : (v1 + e1, v2 := e2, (v1 7→ n)sto) = (n+e1, v2 := e2, (v1 7→ n)sto)

Simple assignment
eq [simple1 ] : (v := E, sto) = (E, v := E, sto)
eq [simple2 ] : (n1, v := E, v 7→ n2 sto) = (skip, v 7→ n1 sto)

Pre-condition
eq [pre1 ] : (P | S, sto) = (P, P | S, sto)
eq [pre2 ] : (v1 = e, (P | S), (v1 7→ n)sto) = (n = e, P | S, (v1 7→ n)sto)
eq [pre3 ] : (true, P | S, sto) = (S, sto)
eq [pre4 ] : (false, P | S, sto) = abort

Bounded choice
rl [bchoice] : (S1 [] S2, sto)⇒ (S1, sto)

Guarded substitution
eq [guard1 ] : (P ==> S, sto) = (P, P ==> S, sto)
eq [guard2 ] : (v1 = e, (P ==> S), (v1 7→ n)sto) = (n = e, P ==> S, (v1 7→ n)sto)
eq [guard3 ] : (true, P ==> S, sto) = (S, sto)
eq [guard4 ] : (false, P ==> S, sto) = (skip, sto)

Unbounded choice
rl [uchoice] : @p.S, sto ⇒ S[n/p], sto, for some n, where p is a place holder.

Fig. 3. Unconditional rewriting logic semantics for GSL.

priately replace the left-hand side by the right-hand side of a given equation, as specified
by equations simple2, pre2 and guard2.

Proof (Sketch). Rewrites in the conditions of C are not deductions in C (the so called
“scratchpad rewrites”). In U they are “unfolded” and become deductions. Equivalence
modulo unfolding of rewrites in the conditions works as follows for expressions. A sim-
ilar reasoning can be applied to predicates.
(=⇒) By structural induction. For Conf terms with simple assignment of the form
v := n, (v 7→ k)sto, where n, k ∈ GNat , the canonical form skip, (v 7→ n)sto is
reached in one step in C by the application of equation simple. The same canonical form
is reached in U in two steps by application of equations simple1 and simple2. For general
simple assignments of the form (v := E, sto),

C ` (v := E, sto)⇒2w+1 (skip, (v 7→ n)sto),

where w is the number of arithmetic operations in E, and 2w+1 denotes the maximum
number of rewrites for this case, when all operands are variables. The canonical form
for the general case in the unconditional rewriting logic semantics for GSL is reached in
2w+2 steps by the application of equation simple1, two times w rewrites with simple3

C. Braga, D. Deharbe, A. Moreira, N. Martí-Oliet 99

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



and one rewrite with simple2.

U ` (v := E, (v 7→ k)sto) →
(E, v := E, (v 7→ k)sto)→2w

(n, v := E, (v 7→ k)sto) → (skip, (v 7→ n)sto)

Terms of sort Conf with pre-conditions or guarded substitution follow a similar reason-
ing. The rule for bounded choice in C is not conditional so it remains the same in U . Rule
uchoice in C is conditioned to the absence of the variable v in the first parameter of @v.S
within the store S in its third parameter. This predicate is checked in the right-hand side
of rule uchoice in U using operator if then else fi.
(⇐=) Rewrites on terms of sort Conf constructed with operators , , : Expression
Substitution Store → Conf and , , : Predicate Substitution Store → Conf in U
are precisely the rewrites that arise from conditions of the equations in C.

U ` v := op(E1, . . . , En), sto →
op(E1, . . . , En), v := E, sto →
op(E′1, . . . , En), v := E, sto →∗
op(m1, . . . ,mn), v := E, sto →∗
m, v := E, sto →
skip, update(sto, v,m)

C `
op(E1, . . . , En)→∗ op(m1, . . . ,mn) ∧ op(m1, . . . ,mn)→∗ m

v := op(E1, . . . , En), sto → skip, update(sto, v,m)

ut

Due to space constraints, we do not present the complete Maude code. It can be ob-
tained in full at https://github.com/ChristianoBraga/gsl-semantics. In what
follows, module GSL-SYNTAX implements the syntax of GSL and module GSL-SEMAN-
TICS implements the unconditional rewriting logic semantics in Fig. 3. We present a
subset of the replacement rules. Following Section 3, the equations are annotated with
the variant attribute. Moreover, the rule for unbounded choice is annotated as nonexec
as it can not be executed by rewriting. It is specified in a logic programming style and
requires narrowing search to be animated. We specify unbounded choice for both natural
numbers and Boolean values.

1 (fmod GSL−SYNTAX is
2 inc GSL−EXPRESSION .
3 inc GSL−PREDICATE .
4 sort Substitution UChoice PlaceHolder .
5 subsort Variable< Expression Predicate .
6 subsort UChoice< Substitution .
7 −−− Simple substitution
8 op := : Variable Expression−> Substitution [ctor] .
9 −−− ”Does nothing” substitution

10 op skip :−> Substitution [ctor] .
11 −−− Pre−condition substitution
12 op | : Predicate Substitution−> Substitution [ctor] .
13 −−− Bounded choice substitution
14 op ‘[‘] : Substitution Substitution−> Substitution [assoc comm ctor] .
15 −−− Guarded substitution
16 op ==> : Predicate Substitution−> Substitution [ctor] .

100 A Rewriting Logic Semantics for the Generalized Substitution Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



17 −−− Unbounded choice substitution
18 op @ . : PlaceHolder Substitution−> UChoice [ctor] .
19 endfm)
20 (mod GSL−SEMANTICS is
21 inc GSL−SYNTAX .
22 inc GSL−STORE .
23 sort Conf .
24 op abort :−> Conf .
25 op ‘, : Substitution Store ˜> Conf .
26 op ‘, ‘, : Predicate Substitution Store ˜> Conf [frozen] .
27 op ‘, ‘, : Expression Substitution Store ˜> Conf [frozen] .
28 op ‘[ / ‘] : Expression GNat PlaceHolder−> Expression .
29 op ‘[ / ‘] : Expression GBool PlaceHolder−> Expression .
30 op ‘[ / ‘] : Predicate GNat PlaceHolder−> Predicate .
31 op ‘[ / ‘] : Predicate GBool PlaceHolder−> Predicate .
32 op ‘[ / ‘] : Substitution GNat PlaceHolder−> Substitution .
33 op ‘[ / ‘] : Substitution GBool PlaceHolder−> Substitution .
34 var V V1 V2 : Variable . vars E E1 E2 : Expression . var STO STO’ : Store . vars G G1 G2 : GNat .
35 var P : Predicate . vars S S1 S2 : Substitution . var PH : PlaceHolder . var B B1 B2 : GBool .
36 eq [simple1] : ((V := E) , STO) = (E, (V := E) , STO) [variant] .
37 eq [simple2] : (V1, (V2 := E) , ((V1 |−> G) STO)) = (G, (V2 := E) , ((V1 |−> G) STO)) [variant] .
38 eq [simple2] : (V1 + E1, (V2 := E2) , ((V1 |−> G) STO)) = (G + E1, (V2 := E2) , ((V1 |−> G) STO)) [variant] .
39 eq [simple2] : (G1, (V := E) , ((V |−> G2) STO)) = (skip , ((V |−> G1) STO)) [variant] .
40 eq [pre1] : (P | S , STO) = (P , P | S , STO) [variant] .
41 eq [pre2] : (V1 eq E, (P | S) , ((V1 |−> G) STO)) = (G eq E, (P | S) , ((V1 |−> G) STO)) [variant] .
42 eq [pre3] : (true, P | S , STO) = (S , STO) [variant] .
43 eq [pre4] : (false, P | S , STO) = abort [variant] .
44 rl [bchoice] : S1 [] S2 => S1 .
45 eq [guard1] : (P ==> S , STO) = (P , (P ==> S) , STO) [variant] .
46 eq [guard2] : ((V1 eq E), (P ==> S) , ((V1 |−> G) STO)) = ((G eq E), (P ==> S) , ((V1 |−> G) STO)) [variant] .
47 eq [guard3] : (true, (P ==> S) , STO) = (S , STO) [variant] .
48 eq [guard4] : (false, (P ==> S) , STO) = (skip, STO) [variant] .
49 rl [uchoice] : (@ PH . S), STO => (S [ G / PH ]), STO [nonexec] .
50 rl [uchoice] : (@ PH . S), STO => (S [ B / PH ]), STO [nonexec] .
51 −−− Equations for [ / ]
52 −−−We assume that alpha−renaming has been performed.
53 eq [repl−simple] : (V := E) [ G / PH ] = V := ( E [ G / PH ] ) .
54 eq [repl−simple] : (V := E) [ B / PH ] = V := ( E [ B / PH ] ) .
55 eq [repl−guarded−subst] : (P ==> S) [ G / PH ] = ((P [ G / PH ]) ==> (S [ G / PH])) .
56 eq [repl−guarded−subst] : (P ==> S) [ B / PH ] = ((P [ B / PH ]) ==> (S [ B / PH])) .
57 eq [repl−ph−gnat] : PH [ G / PH ] = G .
58 eq [repl−ph−gbool] : PH [ B / PH ] = B .
59 eq [repl−and] : (PH and P) [ B / PH ] = B and (P [ B / PH]) .
60 eq [repl−ph−sum] : (PH + E) [ G / PH ] = G + (E [ G / PH ]) .
61 endm)

Example 2. In this example we illustrate how B machine specifications can be animated
using narrowing. We include a new module SIMPLIFIED-ABSTRACT-MACHINE-NOTA-
TION (for a subset of B machine commands) defining equations that specify how some
commands of the Abstract Machine Notation (AMN) can be understood as syntactic
sugar [1, pp. 266–267] to GSL commands. The semantics of CHOICE is given in terms
of bounded choice and ANY in terms of unbounded choice, for instance.

1 (mod SIMPLIFIED−ABSTRACT−MACHINE−NOTATION is
2 inc GSL−SEMANTICS .
3 sort NeSubstitutionSet .
4 subsort Substitution< NeSubstitutionSet .
5 op CHOICE END : NeSubstitutionSet−> Substitution .
6 op ANY WHERE THEN END : PlaceHolder Predicate Substitution−> Substitution .
7 eq CHOICE SS END = SS .
8 eq S OR T = S [] T .
9 eq S OR (T OR SS) = S [] (T OR SS) .

10 eq ANY X WHERE P THEN S END = (@ X . (P ==> S)) .
11 endm)

C. Braga, D. Deharbe, A. Moreira, N. Martí-Oliet 101

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Now, if we execute the very simple AMN program below, devised only to exercise
the symbolic part of GSL semantics, where x is place holder and y a variable,
CHOICE
ANY x WHERE true THEN y := x + s(0)END OR
ANY x WHERE true THEN y := x END
END

Maude produces a solution where y is either bound to some value (that is, x) or the
successor of some value.

1 search [,2] in SAMN−EXAMPLE : CHOICE ANY x WHERE true THEN y := x + s(0)END OR ANY x WHERE true
THEN y := x END END,STO:Store ˜>∗

2 skip, STO’:Store .
3 Solution 1
4 STO’:Store−−> #13:Store y |−> #7:GNat ;
5 STO:Store−−> #13:Store y |−> #12:GNat
6 Solution 2
7 STO’:Store−−> #13:Store y |−> s(#7:GNat);
8 STO:Store−−> #13:Store y |−> #12:GNat
9 No more solutions.

5 Final Remarks

In this paper we propose a Rewriting Logic semantics for the Generalized Substitution
Language, a normal form for B specifications in the B method. This semantics is sym-
bolically executable in the Maude Rewriting Logic system.

Before we conclude, a final remark on the semantics of the uchoice rule. We could
have used explicit metavariables (e.g. [11]) to specify the semantics of GSL unbounded
choice. However, the use of unbounded variables on the right hand-side of a rule is a
simple and sound specification technique, from a logical stand-point. With symbolic
execution, such as narrowing, we need not mix representation levels, that is, the meta-
level and the object level in the semantics. One should also note that, in practice, only the
unconditional semantics exists. The conditional one exists only at the theoretical level
to bridge the gap between the operational semantics for GSL and the executable one in
Maude.

Future work includes supporting the complete syntax of AMN, the inclusion of ad-
ditional automated analysis techniques and a full account of refinement.

References
1. J.-R. Abrial. The B-book - Assigning Programs to Meanings. Cambridge Univ. Press, 2005.
2. K. Bae and J. Meseguer. The Linear Temporal Logic of Rewriting Maude Model Checker.

In Rewriting Logic and Its Applications, volume 6381 of LNCS, pages 208–225, 2010.
3. P. Chartier. B’98: Recent Advances in the Development and Use of the B Method: Second

International B Conference Montpellier, France, April 22–24, 1998 Proceedings, chapter For-
malisation of B in Isabelle/HOL, pages 66–82. Springer Berlin Heidelberg, 1998.

4. M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. M. Oliet, J. Meseguer, and C. Talcott.
Maude Manual. SRI International, July 2016. Version 2.7.1.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott. All
About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify
Systems in Rewriting Logic, volume 4350 of LNCS. Springer, 2007.

102 A Rewriting Logic Semantics for the Generalized Substitution Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



6. D. Déharbe and S. Merz. Formal Aspects of Component Software: 12th International Con-
ference, FACS 2015, Niterói, Brazil, October 14-16, 2015, Revised Selected Papers, chapter
Software Component Design with the B Method — A Formalization in Isabelle/HOL, pages
31–47. Springer International Publishing, Cham, 2016.

7. S. Dunne. ZB 2002:Formal Specification and Development in Z and B: 2nd International
Conference of B and Z Users Grenoble, France, January 23–25, 2002 Proceedings, chapter
A Theory of Generalised Substitutions, pages 270–290. Springer Berlin Heidelberg, 2002.

8. N. Martı́-Oliet and J. Meseguer. Handbook of Philosophical Logic, chapter Rewriting Logic
as a Logical and Semantic Framework, pages 1–87. Springer Netherlands, 2002.

9. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73 – 155, 1992.

10. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

11. A. Verdejo and N. Martı́-Oliet. Implementing CCS in Maude, pages 351–366. Springer US,
Boston, MA, 2000.

12. F. Zeyda, B. Stoddart, and S. Dunne. ZB 2005: Formal Specification and Development in
Z and B: 4th International Conference of B and Z Users, Guildford, UK, April 13-15, 2005.
Proceedings, chapter A Prospective-Value Semantics for the GSL, pages 187–202. Springer
Berlin Heidelberg, 2005.

C. Braga, D. Deharbe, A. Moreira, N. Martí-Oliet 103

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



104 A Rewriting Logic Semantics for the Generalized Substitution Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Automatic generation of focused proof systems

Elaine Pimentel1? and Björn Lellmann2??

1 Department of Mathematics, UFRN, Brazil
2 Department of Computer Languages, TU Wien, Austria

Abstract. In this work we show how to automatically generate focused sequent
systems. For that, we start by capturing the object-level behavior in linear logic
(LL) and use the well established LL meta-level reasoning in order to determine
which object level inference rules are invertible or not. From that, we can propose
a focused version of the non-invertible object-level rules based on the polarity of
the encoded clause in LL.

1 Introduction

In a series of works [3,2,7,4], it has been shown how to use linear logic as a framework
for specifying various proof systems. This not only allowed using the rich and well
stablished linear logic meta-theory in order to reason about these systems, but also
provided automatic proof search to all of them.

For example, by a simple analysis on the shape of rules, one can determine whether
the specified system has cut-elimination, or when the system admits initial axioms
restricted to atoms.

There are some other logical features that have never been analysed, though. One
of them is invertibility of the object inference rules: what the encodings can tell about
it? This analysis is important since one can use the notion of invertibility in order to
produce a focused version of the specified logic, hence providing a better system for
doing proof search.

The goal of this work is to generate focused systems automatically from sequent
systems specified in linear logic. As a side effect, we can determine when an object-level
inference rule is invertible or not.

Although not all sequent systems can be specified in linear logic, there is a great
number of representative systems that can be adequately captured. Some of those still
lack a good notion of focusing.

Also, establishing a general algorithm for proving invertibility of rules is important
enough: like cut-elimination, this is the kind of property that has to be proven by hand,
and in a case-by-case analysis. Automatizing this process seems to be a great step
forward, and it can be used in different logical frameworks.

The rest of the paper is organized as follows: Section 2 presents the process of
transforming sequent systems into LL clauses; Section 3 brings to the surface some new
and not yet explored question of invertibility of inference rules of object-level sequent

? Funded by CNPq and CAPES.
?? Funded by the EU under Marie Skłodowska-Curie grant agreement No. 660047.

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



systems; Section 4 presents the inverse side of the encodings, revealing the behavior
of object logics behind the LL encodings, and proposing focused systems from them
and giving some working examples; finally, Section 5 concludes the paper, with some
exciting future directions to be pursued.

2 From sequent systems to linear logic

In this section we show how to specify sequent systems in linear logic. We quickly
present focused linear logic.

2.1 Linear logic and focusing

The connectives of linear logic can be divided into two classes: the negative ..............................................
............
..................................... , ⊥, &, >,

∀, ?; and the positive ⊕, 0, ⊗, 1, ∃, !. Observe that one class is the de Morgan dual of the
other. A formula is positive if it is a negated atom or its top-level logical connective is
positive. Similarly, a formula is negative if it is an atom or its top-level logical connective
is negative. Atoms can be given any polarity. A literal is either an atomic formula or a
negated atomic formula.

Polarities on formulas determine the so called phases of proof construction: in the
negative phase of proof construction, no backtracking on the selection of inference
rules is necessary, while in the positive phase choices within inference rules can lead to
failures for which one may need to backtrack. This means that focused proofs can be
seen (bottom-up) as a sequence of alternations between negative and positive phases.

The one-sided version of the focused proof system LLF is given in Figure 1.

2.2 Bipoles

The bipoles form a very special class of formulae, since they are totally decomposed in
one focused step.

Definition 1. A monopole formula is a linear logic formula that is built up from atoms
and occurrences of the negative connectives, with the restriction that ? has atomic
scope. A bipole is a positive formula built from monopoles and negated atoms using
only positive connectives, with the additional restriction that ! can only be applied to a
monopole.

Using the linear logic distributive properties, monopoles are equivalent to formulas of
the form

∀x1 . . .∀xp[&i=1,...,n
..............................................
............
.....................................
j=1,...,mi Bi, j],

where the Bi, j are either atoms or the result of applying ? to an atomic formula. Similarly,
bipoles can be rewritten as formulas of the form

∃x1 . . .∃xp[⊕i=1,...,n ⊗ j=1,...,mi Ci, j],

where Ci, j are either negated atoms, monopole formulas, or the result of applying ! to a
monopole formula. Notice that the units >, 0, ⊥, and 1 are 0-ary versions of &, ⊕, ..............................................

............
..................................... ,

106 Automatic generation of focused proof systems

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Negative rules

Ψ ;∆ ⇑ L
Ψ ;∆ ⇑ ⊥, L [⊥]

Ψ ;∆ ⇑ F,G, L
Ψ ;∆ ⇑ F

..............................................
............
..................................... G, L

[
..............................................
............
..................................... ]

Ψ, F;∆ ⇑ L
Ψ ;∆ ⇑ ?F, L

[?]

Ψ ;∆ ⇑ >, L [>]
Ψ ;∆ ⇑ F, L Ψ ;∆ ⇑ G, L

Ψ ;∆ ⇑ F & G, L
[&]

Ψ ;∆ ⇑ F[y/x], L
Ψ ;∆ ⇑ ∀x.F, L

[∀]

Positive rules

Ψ ; · ⇓ 1
[1]

Ψ ;∆1 ⇓ F Ψ ;∆2 ⇓ G
Ψ ;∆1, ∆2 ⇓ F ⊗G

[⊗]
Ψ ; · ⇑ F
Ψ ; · ⇓ ! F

[!]

Ψ ;∆ ⇓ F1

Ψ ;∆ ⇓ F1 ⊕ F2
[⊕l]

Ψ ;∆ ⇓ F2

Ψ ;∆ ⇓ F1 ⊕ F2
[⊕r]

Ψ ;∆ ⇓ F[t/x]
Ψ ;∆ ⇓ ∃x.F

[∃]

Identity, Decide, and Reaction rules

Ψ ; A ⇓ A⊥
[I1]

Ψ, A; · ⇓ A⊥
[I2]

Ψ ;∆ ⇓ F
Ψ ;∆, F ⇑ · [D1]

Ψ, F;∆ ⇓ F
Ψ, F;∆ ⇑ · [D2]

In [I1] and [I2], A is atomic; in [D1] and [D2], F is not an atom.

Ψ ;∆, F ⇑ L
Ψ ;∆ ⇑ F, L

[R ⇑] provided that F is positive or an atom

Ψ ;∆ ⇑ F
Ψ ;∆ ⇓ F

[R ⇓] provided that F is negative

Fig. 1. Focused proof search in linear logic LLF. The variable y in the [∀] rule is restricted so that
it is not free in any formula of its conclusion.

and ⊗, respectively. Given this normal representation of bipoles and according to the
focusing discipline, it turns out that, once introduced, a bipole is completely decomposed
into its atomic subformulas, a fact illustrated by the following bipole derivation.

· · ·

· · ·
Ψ ′;Γ′ ⇑ ·

Ψ ;Γ′ ⇑............................................................................................... j=1,...,mi ?Ai, j
[.
.............................................
............
..................................... , ?] · · ·

Ψ ;Γ′ ⇑ ∀x1 . . .∀xp[&i=1,...,n
..............................................
............
.....................................
j=1,...,mi ?Ai, j]

[∀,&]

Ψ ;Γ′ ⇓ !∀x1 . . .∀xp[&i=1,...,n
..............................................
............
.....................................
j=1,...,mi ?Ai, j]

[!] · · ·
Ψ ;Γ ⇓ ∃x1 . . .∃xt[⊕i=1,...,k ⊗ j=1,...,qi Ci, j]

[∃,⊕,⊗]

Here Ai, j is atomic for all i, j. If the connective ! is not present, then the rule ! is replaced
by the rule R ⇓.

2.3 Specifying logical systems

Bipoles play an important role when specifying inference rules. In fact, since they are
decomposed entirely and at once, one can guarantee that the application of an object
level rule is matched by focusing on bipole a clause: no other meta-level action can be
done in the middle of the process.

E. Pimentel, B. Lellmann 107

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Specifying sequents Let obj be the type of object-level formulae and let b·c and d·e be
two meta-level predicates of type obj→ o. Object-level sequents of the form B1, . . . , Bn `
C1, . . . ,Cm (where n,m ≥ 0) are specified as the multiset bB1c, . . . , bBnc, dC1e, . . . , dCme
within the LLF proof system. The b·c and d·e predicates identify which object-level
formulas appear on which side of the sequent – brackets down for left and brackets up
for right. We will assume that atoms in LLF are given a negative bias.

Specifying inference rules Inference rules are specified by a re-writing clause that
replaces the active formulae in the conclusion by the active formulae in the premises.
The linear logic connectives indicate how these object level formulae are connected:
contexts are copied (&) or split (⊗), in different inference rules (⊕) or in the same sequent
(.
.............................................
............
..................................... ). As an example, the additive and multiplicative versions of the right inference rules

for conjunction are, respectively

∆ ` Γ, A ∆ ` Γ, B
∆ ` Γ, A ∧ B

∧RA
∆1 ` Γ1, A ∆2 ` Γ2, B
∆1, ∆2 ` Γ1, Γ2, A ∧ B

∧RM

These inference rules can be specified in linear logic using the clauses

(∧RA) ∃A, B(dA ∧ Be⊥ ⊗ (dAe& dBe)). (∧RM) ∃A, B(dA ∧ Be⊥ ⊗ (dAe ⊗ dBe)).

Specifying cut, initial and structural rules We shall assume that all systems have the
exchange rule (that is, we will not deal with non-commutative logics). Weakening and
contraction are handled by a direct use of linear logic exponentials and the structural
clauses

(Neg) ∃B(dBe⊥ ⊗ ?dBe) (Pos) ∃B(bBc⊥ ⊗ ?bBc).
The initial rule, which asserts that the sequent B ` B is provable, can be specified by the
clause

(Init) ∃B(bBc⊥ ⊗ dBe⊥).

The multiplicative cut rule can be specified by the clause

(Cut) ∃B(dBe ⊗ bBc),
The Init and Cut clauses together prove that b·c and d·e are duals of each other, that is,
∀B(bBc⊥ ≡ dBe).

When specifying a system (logical, computational, etc) into a meta level framework,
it is mandatory that the specification is faithful, that is, one step of computation on the
object level should correspond to one step of logical reasoning in the meta level. This is
what is called adequacy [5].

Definition 2. A specification of an object sequent system is proof-adequate if provability
is preserved by the specification. If the adequacy can be shown for (open) derivations
(such as inference rules themselves), then we call the specification adequate.

Adequate specifications can be used for automatic proof search since each focused phase
in the LLF derivation corresponds to the application of a logical object rule and vice
versa. However, in this work we will not focus our attention on proof search, but how
the meta-level theory obtained from adequate specifications can be better analyzed so to
produce better object logical systems.

108 Automatic generation of focused proof systems

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



3 Canonical systems and invertibility

The following definition captures the notion of introduction rules in the meta-level
approach, using bipoles.

Definition 3. Let � be an object-level connective of arity n (n ≥ 0) and q ∈ {b·c, d·e}. A
clause of the shape

∃A∃x.[h(�, A) ⊗ B]

is called an introduction clause if it is a closed bipole formula where:

– h(�, A) is a positive formula of the form q(�(A))⊥.
– An atom occurring in B is of the form q(A) or q(A(z)) with A ∈ A and z < {x}.

We call h(�, A) the head and B the body of the introduction clause.

Definition 4. A canonical clause is an introduction clause restricted so that, for every
pair of atoms of the form bT c and dS e in a body, the head variable of T differs from the
head variable of S . A canonical proof system theory is a set X of bipoles such that (i)
the Init and Cut clauses are members of X, (ii) structural clauses (Pos and Neg) may be
members of X, and (iii) all other clauses in X are canonical (introduction) clauses.

We will now analyse better the meaning, at the meta level, of invertibility at the
object level.

Definition 5. An inference rule is invertible if, the derivability of its premisses follows
from the derivability of its conclusion.

It is easy to see that in LL, for example, all the connectives classified as negatives have
invertible rules. In general, for proving that a rule is invertible one has to analyse two
cases: when the conclusion formula is principal in the derivation to not. If it is principal
with the application of an introduction rule for the main connective, then the result is
trivial, not requiring induction. Also, if the conclusion formula is not principal the result
follows trivially by the inductive hypothesis. Difficulties may arise when the formula
is principal either in an instance of contraction or the initial axiom, as the following
example shows.

Example 1. Consider a logical system containing only the following rules

Γ, A ` ∆, A init
Γ, A ` ∆ Γ, B ` ∆
Γ, A ? B ` ∆ ?L

Γ ` ∆, A
Γ ` ∆, A ? B

?R

The left and right introduction rules for ? look like the rules for the additive disjunction,
apart from the fact that ? has only one right rule. It is well known that the left rule for
additive disjunction is invertible, in general. But the rule ?L is not invertible. In fact, if it
was, from any proof of Γ, A ? B ` ∆ there would be a proof of Γ, A ` ∆ and a proof of
Γ, B ` ∆. But, although A ? B ` A ? B is provable, B ` A ? B does not have a proof.

Hence, the invertibility of a rule depends on all the rules of the system. The problem
with the system above is that the initial axiom cannot be restricted to atoms.

E. Pimentel, B. Lellmann 109

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Definition 6. Let X be a canonical proof system and � an object-level connective of
arity n ≥ 0. Furthermore, let the formulas

∃A∃x.[hl(�, A) ⊗ Bl] and ∃A∃x.[hr(�, A) ⊗ Br]

be the left and right introduction clauses for �. The object-level connective � is coherent
if Bl and Br are dual LL formulas, that is, if the sequents

Cut, Init; · ⇑ ∀x.(Bl)⊥ ≡ Br and Cut, Init; · ⇑ ∀x.(Br)⊥ ≡ Bl

are provable in LLF. A canonical system is called coherent if all object-level connectives
have coherent introduction rules.

The following theorem relates coherent systems, cut elimination and initial axioms
(see [4] for the proof).

Theorem 1. If a canonical proof system X is coherent then it has cut-elimination and
the initial axiom can be restricted to atoms.

The following result is now given by the invertibility of right rules for negative
connectives in linear logic.

Theorem 2. Let X be a coherent system corresponding to an adequate specification of
an object logical system in LLF and let ∃A∃x.[h(�, A) ⊗ B] be the introduction clause
for an object level connective �. Then B is a monopole if and only if the corresponding
object logical rule is invertible.

Proof. For one direction, suppose that h(�, A) = (d�(A)e)⊥ and let π be a proof of
Γ ` ∆, �(A). If the last rule applied in π is �R, then the result follows trivially. Otherwise,
the proof proceeds by induction on the size of π.

Suppose that the last rule applied in π is the initial axiom on �(A), which means that
�(A) ∈ Γ. Hence π corresponds to a LLF proof focusing on the init clause, instantiated
by �(A). Since the system is coherent, this proof can be replaced by a meta-level proof
where init is restricted to atomic object formulas. The last rule of such a proof has
to necessarily be a focusing over the (�R) clause. In fact, since Br is negative, it will
be totally decomposed in its subformulas, and applying such a clause won’t change
provability of the meta level sequent.

Since the specification is adequate, such a meta-level proof can be faithfully translated
into an object level proof π′, which last applied rule is �R.

If the last rule applied in π is the initial axiom on some other formula, then �(A) will
be weakened and it can be substituted by any other formula, including the ones in the
premises of �R.

Finally, if �(A) is not principal in the last rule applied in π, then the result holds
easily, using the inductive hypothesis.

The other direction is trivial since invertibility is inherited from object to meta-level
by adequate specifications. ut
Example 2. Consider the introduction rules for ?, presented in Example 1. As we noted,
the left rule for ? is not invertible, although it is encoded by the LL clause

bA ? Bc⊥ ⊗ bAc& bBc

110 Automatic generation of focused proof systems

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



where the body is a monopole. But the system is not canonical since, in the presence of
Cut and Initial,

(bAc& bBc)⊥ ≡ dAe ⊕ dBe . dAe
That is, the hypothesis of the theorem does not hold.

4 From linear logic to focused systems

We will now show how to recover formulas, contexts and sequents from specified systems.
Then we show an algorithm for transforming introduction clauses into focused rules.

Formulas. The set U(F) of underlying object level formulas F of a meta-level formula
F is defined recursively as

– if F = dAe then F = A;
– if F = bActhen F = (A)⊥;
– U(F) = {Fi | Fi is an atomic subformula of F}.

Contexts. We will denote by Γ, ∆ object contexts.

Sequents. We will denote by Γ → [A], ∆ a focused sequent over a formula on the right,
Γ, [A]→ ∆ a focused sequent over a focused formula on the left and Γ ⇒ ∆ an unfocused
sequent. Given Fi ∈ U(F), if Fi = (A)⊥ then A is placed in the antecedent of a sequent.
Otherwise, Fi is placed in the succedent.

Rules. An introduction clause of the form ∃A∃x.d�(A)e⊥ ⊗ B corresponds to a focused
object rule {

Γ j m ∆ j

}
j

Γ, m x : �(A), ∆
[�R]

where formulas in Γ j, ∆ j are in Γ, ∆,U(B) and the number of premises as well as the
shape of a context (i.e. if it is split or copied) is entirely determined by the meta-level
specification; moreover, m∈ {⇒,→} is completely determined by the polarity of the body
of the clause as follows:

1. the conclusion sequent is focused on �(A) if and only if the body is positive; if the
body is negative, then the premise sequents are unfocused;

2. one of the premises sequent is focused if and only if B is a positive formula with no
banged subformulas or no negative non-atomic subformulas;

3. if B is positive with a negative non-atomic subformula, then the correspondent
premise sequent is unfocused.

The algorithm for left rules follows the same lines as above.

Theorem 3. Let OS be an object system and OS and adequate encoding of it. Then the
focused system obtained is correct and complete w.r.t OLS .

Proof. Direct from the adequacy of the encoding. ut

E. Pimentel, B. Lellmann 111

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



(⊃L) bA ⊃ Bc⊥ ⊗ (dAe ⊗ bBc). (⊃R) dA ⊃ Be⊥ ⊗ (bAc ..............................................
............
..................................... dBe).

(∧L) bA ∧ Bc⊥ ⊗ (bAc ⊕ bBc). (∧R) dA ∧ Be⊥ ⊗ (dAe& dBe).
(∨L) bA ∨ Bc⊥ ⊗ (bAc& bBc). (∨R) dA ∨ Be⊥ ⊗ (dAe ⊕ dBe).
(∀cL) b∀cBc⊥ ⊗ ∃xbBxc. (∀cR) d∀cBe⊥ ⊗ ∀xdBxe.
(∃cL) b∃cBc⊥ ⊗ ∀xbBxc. (∃cR) d∃cBe⊥ ⊗ ∃xdBxe.
( fcL) b fcc⊥ ⊗ >. (tcR) dtce⊥ ⊗ >.

Fig. 2. Specification of the classical logic’s system LK.

Fig. 3. Focused version of LK.

Γ1 → ∆1, [A] Γ2, [B]→ ∆2

Γ1, Γ2, [A ⊃ B]→ ∆1, ∆2
⊃ L

Γ, A⇒ ∆, B
Γ ⇒ ∆, A ⊃ B ⊃ R

Γ, [A]→ ∆

Γ, [A ∧ B]→ ∆
∧L1

Γ, [B]→ ∆

Γ, [A ∧ B]→ ∆
∧L2

Γ ⇒ ∆, A Γ ⇒ ∆, B
Γ ⇒ ∆, A ∧ B ∧R

Γ, A⇒ ∆ Γ, B⇒ ∆

Γ, A ∨ B⇒ ∆
∨L

Γ → ∆, [A]
Γ → ∆, [A ∨ B]

∨R1
Γ → ∆, [B]

Γ → ∆, [A ∨ B]
∨R2

Γ, B[t/x]→ ∆

Γ,∀c.B→ ∆
∀L

Γ ⇒ ∆, B[y/x]
Γ ⇒ ∆,∀c.B

∀R

Γ, B[y/x]⇒ ∆

Γ,∃c.B⇒ ∆
∃L

Γ → ∆, B[t/x]
Γ → ∆,∃c.B

∃R

Γ, fc ⇒ ∆
fcL

Γ ⇒ ∆, tc
∃R

4.1 Some relevant examples

In Figure 2 we present the adequate encoding of the system LK, for classical logic. We
proved in [4] that this specification is adequate, and that the specified system is coherent.

Hence, by Theorem 2, the rules ⇒R,∧R,∀cR, fcL, fcR,∨L and ∃cL are invertible
and the resulting focused system is given in Figure 3.

It is straightforward to do the same reasoning for clauses in Figures 4 and 5.
It is interesting to note that not all sequent systems can be adequately encoded in LL.

In fact, in [6] we showed that well known sequent modal systems (e.g for K and S4)
could not be adequately encoded in LL. In that work, we presented two solutions: either
change the sequent system (for using, e.g. labelled systems) or change the meta-level
system (use the so called subexponentials).

It is pretty straightforward to change our approach in order to handle labelled systems.
In fact, it is sufficient adding relational formulas. Since this is also enough for describing
extensions of sequent systems based in nested sequents, all we have described so far
should work for more involving proof systems. This is an ongoing work. See Figure 6 for
the encoding in LL of the modal system KD, together with its automatically generated
focused system.

112 Automatic generation of focused proof systems

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



(⊃L) bA ⊃ Bc⊥ ⊗ (dAe ⊗ bBc). (⊃ R) dA ⊃ Be⊥ ⊗ (bAc ..............................................
............
..................................... dBe).

(∩L) bA ∩ Bc⊥ ⊗ (bAc ⊕ bBc). (∩R) dA ∩ Be⊥ ⊗ (dAe& dBe).
(∪L) bA ∪ Bc⊥ ⊗ (bAc& bBc). (∪R) dA ∪ Be⊥ ⊗ (dAe ⊕ dBe).
(∀iL) b∀iBc⊥ ⊗ ∃xbBxc. (∀iR) d∀iBe⊥ ⊗ ∀xdBxe.
(∃iL) b∃iBc⊥ ⊗ ∀xbBxc. (∃iR) d∃iBe⊥ ⊗ ∃xdBxe.

Fig. 4. Specification LM minimal logic

(−◦L) bA −◦ Bc⊥ ⊗ (dAe ⊗ bBc). (−◦R) dA −◦ Be⊥ ⊗ (bAc ..............................................
............
..................................... dBe).

(⊗L) bA ⊗ Bc⊥ ⊗ (bAc ..............................................
............
..................................... bBc). (⊗R) dA ⊗ Be⊥ ⊗ (dAe ⊗ dBe).

(&L1) bA & Bc⊥ ⊗ bAc. (&R) dA & Be⊥ ⊗ (dAe& dBe).
(&L2) bA & Bc⊥ ⊗ bBc. (⊕R1) dA ⊕ Be⊥ ⊗ dAe.
(⊕L) bA ⊕ Bc⊥ ⊗ (bAc& bBc). (⊕R2) dA ⊕ Be⊥ ⊗ dBe.
(
..............................................
............
..................................... L) bA ..............................................

............
..................................... Bc⊥ ⊗ (bAc ⊗ bBc). (

..............................................
............
..................................... R) dA ..............................................

............
..................................... Be⊥ ⊗ (dAe ..............................................

............
..................................... dBe).

(! L) b! Bc⊥ ⊗ ?bBc. (! R) d! Be⊥ ⊗ !dBe.
(?L) b?Bc⊥ ⊗ !bBc. (?R) d?Be⊥ ⊗ ?dBe.
(∀lL) b∀lBc⊥ ⊗ ∃xbBxc. (∀lR) d∀lBe ⊗ ∀xdBxe.
(∃lL) b∃lBc⊥ ⊗ ∀xbBxc. (∃lR) d∃lBe⊥ ⊗ ∃xdBxe.
(1L) b1c⊥ ⊗ ⊥ . (1R) d1e⊥ ⊗ !>.
(⊥ L) b⊥c⊥ ⊗ !>. (⊥ R) d⊥e⊥ ⊗ ⊥ .
(0L) b0c⊥ ⊗ >. (>R) d>e⊥ ⊗ >.

Fig. 5. Specification of object-level linear logic LL.

5 Concluding remarks and future work

In this work, we have moved forward into the direction of providing focused sequent
systems for given object level systems. In a nutshell, what we did was to establish a kind
of Galois connection between the object level and the meta level, in this case, linear
logic (LL).

The idea is to take an object level sequent system, adequately encode it into LL,
verify that is has good properties and come back to the object level via a focused system.
Observe that provability is guaranteed in the process, while we end up with less proofs
at the end of the process. That is, our connection refines the proof space, leaving only
the normal proofs.

A criticism one may have in this method is that it should be easier to get the focused
system directly from the original one, without passing through LL. Although this is true
in essence, focusing was first defined for LL and all focused proof systems proposed
so far relies somehow in this base notion, either via translations or via semantic graphs.
There is no “general” notion of what focusing is.

Here we propose that focusing is, in fact, inherited by LL, and we adequately translate
this to the object level.

There are a number of ways of continuing this work, we will present two: (1) as said in
Section 4.1, it is easy to extend this work to labelled systems, hence being able to handle
modal logics; and (2) it is still open the cut-elimination criteria to extensions of sequent
systems, like linear nested systems [1]. With that, one could think of automatically

E. Pimentel, B. Lellmann 113

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



R, X, x : A⇒ x : A,Y init
R, X, x : A, x : B→ Y
R, X, x : A ∧ B→ Y

∧L
R, X → x : A,Y R, X → x : B,Y

R, X → x : A ∧ B,Y
∧R

xRy, X → Y, y : A zRx→ zRx
zRx, X ⇒ Y, [x : �A]

�R
xRy, y : A→ Y xRy→ xRy

xRy, [x : �A]⇒ Y
�L

xRy, X, y : A→ Y zRx→ zRx
zRx, [x : �A], X ⇒ Y d

Fig. 6. Some rules of the focused labeled-linear sequent calculus FLLSKD for KD .

generating focused systems for a gamma of systems not adequately represented by
sequent calculi.

References

1. Lellmann, B., Pimentel, E.: Proof search in nested sequent calculi. In: Logic for Programming,
Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva,
Fiji, November 24-28, 2015, Proceedings. pp. 558–574 (2015)

2. Miller, D., Pimentel, E.: Using linear logic to reason about sequent systems. In: Egly, U.,
Fermüller, C.G. (eds.) International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods. LNCS, vol. 2381, pp. 2–23. Springer (2002)

3. Miller, D., Pimentel, E.: Linear logic as a framework for specifying sequent calculus. In: van
Eijck, J., van Oostrom, V., Visser, A. (eds.) Logic Colloquium ’99: Proceedings of the Annual
European Summer Meeting of the Association for Symbolic Logic, pp. 111–135. Lecture Notes
in Logic, A K Peters Ltd (2004)

4. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems.
Theor. Comput. Sci. 474, 98–116 (2013)

5. Nigam, V., Miller, D.: A framework for proof systems. J. of Automated Reasoning 45(2),
157–188 (2010)

6. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and reasoning about
proof systems. J. Log. Comput. 26(2), 539–576 (2016), http://dx.doi.org/10.1093/
logcom/exu029

7. Pimentel, E., Miller, D.: On the specification of sequent systems. In: LPAR 2005: 12th In-
ternational Conference on Logic for Programming, Artificial Intelligence and Reasoning. pp.
352–366. No. 3835 in LNAI (2005)

114 Automatic generation of focused proof systems

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Towards Simpler Theorem-Proving of Graph
Grammars with Negative Application Conditions

Guilherme Azzi and Leila Ribeiro

Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

Email: {ggazzi, leila}@inf.ufrgs.br

Abstract. Graph Grammars are a rule-based computational model, de-
scribing the states of a system as graphs and its behavior as rewriting
rules. In order to ensure that a graph grammar has the desired prop-
erties, theorem proving is a promising approach: it can guarantee that
a specification is respected, without being affected by the combinatorial
explosion of the state-space generated even by simple grammars. Ap-
plying the existing approaches for theorem-proving graph grammars can
however be very complex. Within an ongoing effort to ease an exist-
ing approach, this paper proposes a simple modification, in an attempt
to simplify the proofs. The impact of this modification is discussed, as
well as some remaining roadblocks to the practical application of the
approach.

1 Introduction

The formalism of Graph Grammars [12,5] is a rule-based computational model,
describing the states of a system as graphs and its behavior as rewriting rules.
It is an inherently data-driven model, with a visual and intuitive representation,
while still possessing solid formal underpinnings. The rule-based, data-driven and
non-deterministic nature of Graph Grammars makes them well-suited to model
reactive, concurrent and distributed systems. They are also a good match for
model-based software development, where the transformation of visual models
is central to the process.

A rich theory of graph rewriting was developed in the last few decades, pro-
viding several extensions to the original formalism, which are often conveninent
or even necessary when modelling nontrivial systems. A particularly common
extension is the use of negative application conditions [7] (NACs), which extend
rules with patterns that forbid their application if present. Another vital ex-
tension is the use of attributed nodes and edges, that is, associating values of
certain data types (e.g. numbers) to them, as well as allowing rules to contain
variables and terms.

Besides the aforementioned extensions, several verification techniques were
developed to ensure that a graph grammar has the desired properties. Among
them, theorem proving is attractive despite the high effort involved in the proofs.
It can guarantee that a grammar has certain properties, which static analysis

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



techniques such as critical pair analysis and concurrent rules [5,10,9] cannot
achieve in general. Furthermore, unlike model checking, it is not affected by the
large or infinite state-spaces that are generated even by simple grammars.

An approach for theorem proving graph grammars was previously investi-
gated in [11,3], where Graph Grammars were encoded in event-B [1]. Invariants
of the grammar were then formulated in first-order logic with set theory and
proved in the Rodin theorem prover [2]. It was noted, however, that “it might
be a very complex task to state the desired property as well as develop the proof,
even for developers with a strong theoretical background” [3], which led to an
ongoing effort to improve the usability of this framework. An alternative encod-
ing of NACs was proposed [3], and specification patterns [4] as well as proof
strategies [8] were proposed.

This papers follows this ongoing effort, proposing an alternative encoding of
graph grammars into event-B with the aim of simplifying proofs of invariants. An
example graph grammar is encoded and verified, and the difficulty of verification
is compared to the original encoding. During the verification process, a few major
roadbloacks to make this approach practicable were identified and are described
in this paper.

The remainder of this paper is organized as follows. Sections 2 and 3 briefly
present the definitions of graph grammars with NACs and the formalism of
event-B, respectively. Section 4 proposes a modification to the translation of
graph grammars to event-B. Section 5 discusses the impact of the changes on
the development of proofs, listing the main difficulties that still remain, while
section 6 summarizes and concludes this paper.

2 Graph Grammars with NACs

In this section we briefly review the main definitions of graph grammars with
NACs from a set-theoretical perspective, rather than the more common catego-
rial approach. These definitions are presented in more detail in [5,3].

A graph G is a tuple (VG, EG, srcG , tgtG), where VG is a set of nodes, EG
is a set of edges, and srcG , tgtG : EG → VG assigns the sources and targets,
respectively, to the edges. A graph morphism f : G→ H is a pair of functions
(fV : VG → VH , fE : EG → EH), respecting sources and targets, i.e.

∀e ∈ EG · fV (srcG(e)) = srcH (fE(e)) ∧ fV (tgtG(e)) = tgtH (fE(e))

A partial graph morphism is a graph morphism where functions over
nodes and edges are partial.

Real applications handle entities of different types, which may relate to each
other in several different ways. An example from [3] is the specification of a token
ring protocol, where all nodes are of the same type, but different edges are used
to indicate the ownership of a token or message, the next node in the ring, and
which node is currently active. This may be supported by taking a particular
graph as the type graph . Figure 1 shows the type graph for the token ring
example.

116 Towards Simpler Theorem-Proving of Graph Grammars with Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Fig. 1. Types for the token ring protocol, from [3]

A typed graph is then a tuple GT = (G, tG , T ), where G is the graph itself,
T is the type graph and tG : G→ T assigns the types to nodes and edges of G. A
typed graph morphism from GT to HT is just a graph morphism f : G→ H
that also preserves types, i.e.

∀v ∈ VG · tGV (v) = tHV (fV (v))

∀e ∈ EG · tGE (e) = tHE (fE(e))

In order to model the dynamic aspects of the system, we need transformations
rules. Such rules should assert that, whenever a given pattern is found on a graph,
certain nodes/edges should be deleted and other nodes/edges should be created.
A rule may thus be modeled by an injective T -typed partial graph morphism
ρ : L 7� R. The left-hand side L defines the pattern that should be found in
the graph. Any nodes/edges that are not mapped by ρ will be deleted, and the
nodes/edges of the right-hand side R that are outside the image of ρ will be
created.

Besides using a pattern to permit the application of a rule (the left-hand
side), it is often useful to define patterns that prohibit the application. Thus, we
define a negative application condition with a graph N expressing the forbidden
pattern, as well as a morphism nac : L→ N , embedding the left-hand side into
the forbidden pattern. The complete definition of a rule with NACs is thus a
pair (ρ,NAC ), where ρ : L 7� R is the rule morphism and NAC = {naci : L→
Ni}i is a (finite) set of NACs.

As an example, two rules from [3] may be seen in Figure 2, describing part
of a token ring protocol. These two rules specify what a node that possesses the
token may do, as long as it is not yet active: it may either become active and
send a message (Rule 1), or just hand the token to the next node (Rule 2).

When specifying a complete system, we must give its rules as well as an initial
state. Thus, a Graph Grammar with NACs is a tuple (T,G0, R), where T is
a type graph, G0 is the initial T -typed graph and R is a set of rules with NACs.

In order to apply a rule to an instance graph G, we need a match m : L→ G
embedding the left-hand side into the instance graph. In order for a rule to be

G. Azzi, L. Ribeiro 117

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Fig. 2. Some rules for a token ring protocol, from [3]

applicable to a particular match, both the NACs and some gluing conditions
must be respected: the dangling condition states that no edges may be incident
to deleted nodes, except those that will be deleted by the rule; the identification
condition requires that the match may not map two nodes or edges of the left-
hand side into the same element of the instance graphs, if one of them is deleted
and the other, preserved. While some approaches don’t require the dangling
condition, implicitly deleting any non-matched edges incident to a deleted node,
the identification condition is generally considered useful.

The formal definition of the gluing conditions, of NAC satisfaction by a
match, and of the rewriting are omitted due to lack of space. They may be
found in [6].

3 Event-B

Event-B [1] is a state-based formalism for modelling, specification and verifica-
tion of systems. It is based in first-order logic and set theory. An event-B model
is composed of a static part, called the context, and a dynamic part, called the
machine. A context (c, s, A) contains sets c and s of constants and set names,
respectively, as well as a collection of axioms A(c, s) describing them. A machine
(v, I, init , E) contains a set of variables v that describe its state, a set of invari-
ants I(v) that should be respected in every (reachable) state, an initialization
predicate init(v′) that constrains the initial state of the machine, and a set E of
events, which describe the execution of the machine. An event (G,BA) is defined
by a guard G(v), which restricts the states in which the event may occur, and a
before-after predicate BA(v, v′), which describes the modified state with respect
to the original one. When multiple events are enabled in a state, the semantics
of event-B executes one of them non-deterministically. A formal definition of the
event-B semantics is omitted due to lack of space.

The Rodin Plaftorm [2] provides extensive tool suppport for modeling with
event-B. It automatically generates the proof obligations that are necessary to

118 Towards Simpler Theorem-Proving of Graph Grammars with Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



prove that the invariants hold in every reachable state, and assists in proving
such obligations.

4 Modified Translation of Graph Grammars to Event-B

In [3], graph grammars are translated to event-B by a very literal representation
of their parts, which is put into the context. Graphs are represented as sets
of nodes and edges, as well as source and target functions. (Partial) morphisms
between graphs are represented as pairs of (partial) functions, one over nodes and
another over edges. Rules are represented by their left- and right-hand graphs
and the partial morphism between them, as well as objects and morphisms for
the NACs. The application of each rule is then defined as an event of the machine,
postulating the existence of the appropriate morphisms and defining the modified
graph in terms of the sets and functions.

Example 1. The translation of Rule 1 from Figure 2 to event-B will generate the
following event:

event r1
any mV // node−component o f the match

mE // edge−component o f the match
newMsg11 newAct11 // f r e s h names f o r the c r ea t ed edges

where
// Match i s t o t a l on nodes and edges
@grd mV mV ∈ VertL1 → VertG
@grd mE mE ∈ EdgeL1 → EdgeG

// Match r e s p e c t s types , source and t a r g e t
@grd tV ∀v · v ∈ VertL1 ⇒ tL1V(v) = tGV(mV(v))
@grd tE ∀e · e ∈ EdgeL1 ⇒ tL1E(e) = tGE(mE(e))
@ g r d s r c t g t ∀e · e ∈ EdgeL1 ⇒ mV(sourceL1(e)) = srcG(mE(e))∧

mV(targetL1(e)) = tgtG(mE(e))

// The c rea t ed edges are d i s t i n c t and new
@grd new newMsg11 newMsg11 ∈ N \ EdgeG
@grd new newAct11 newAct11 ∈ N \ EdgeG
@grd di f f newEdges newMsg11 6= newAct11

// The NAC i s s a t i s f i e d
@grd NAC1 ¬(∃nV, nE·

nV ∈ VertNAC1 � VertG ∧ nE ∈ EdgeNAC1 � EdgeG ∧
(∀v · v ∈ VertNAC1 ⇒ tNAC1V(v) = tGV(nV(v))) ∧
(∀e · e ∈ EdgeNAC1 ⇒ tNAC1E(e) = tGE(nE(e))) ∧
(∀e · e ∈ EdgeNAC1 ⇒ nV(sourceNAC1(e)) = srcG(nE(e))∧

nV(targetNAC1(e)) = tgtG(nE(e))) ∧
nV ◦ nac1V = mV ∧ nE ◦ nac1E = mE)

end
then

@act E EdgeG := EdgeG ∪ {newAct11, newMsg11}
@ a c t s r c srcG := srcG ∪ {newAct11 7→ mV(N11), newMsg11 7→ mV(N12)}
@act tg t tgtG := tgtG ∪ {newAct11 7→ mV(N11), newMsg11 7→ mV(N12)}
@act tE tGE := tGE ∪ {newAct11 7→ Act, newMsg11 7→ Msg}

end
end

Despite this translation being correct, it was noted that properties dealing
with concrete elements of the state were very hard to prove [3], since the non-
existence of the concrete forbidden elements must be manually proven from the

G. Azzi, L. Ribeiro 119

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



non-existence of particular morphisms. The authors then proposed an alterna-
tive, set-theoretic formulation of NACs, postulating the non-existence of the
forbidden nodes and edges explicitly. This alternative formulation was proven
equivalent to the original one, and was successfully used to prove the desired
properties.

Example 2. The alternative translation of the NAC in Rule 1 of Figure 2 will
generate the following guard:

// The NAC i s s a t i s f i e d
@grd NAC1 ¬(∃forbAct12·

forbAct12 ⊆ EdgeG \ mE[EdgeL1] ∧ tGE(forbAct12) = Act ∧
srcG(forbAct12) = mV(N11) ∧ tgtG(forbAct12) = mV(N11))

Although some amount of indirection was removed by the alternate NAC
translation, some indirection still remains when reasoning about the match. We
therefore a similar approach: instead of describing the match as a function, the
events should contain variables for the individual nodes and edges of the match.
An informal description of the encoding follows below.

for v ∈ VL do
add new variable vv to the parameters of the event;

add the guard
[
vv ∈ EdgeG ∧ tGV(vv) = typetLV (v)

]
;

end
for e ∈ EL do

add new variable ee to the parameters of the event;

add the guard

[
ee ∈ EdgeG ∧ tGE(ee) = typetLE (e)∧
srcG(ee) = vsrcL(e) ∧ tgtG(ee) = vtgtL(e)

]
;

end

add the variables MatchV, MatchE, DelV and DelE to the parameters;

add a guard
[
MatchV ⊆ VertG ∧ MatchV =

{
vv1 , vv2 , . . .

}]
, vi ∈ VG;

add a guard
[
DelV ⊆ MatchV ∧ DelV =

{
vv1 , vv2 , . . .

}]
, vi ∈ VG \ dom(ρV );

add similar guards for MatchE and DelE;
add guards stating that the gluing conditions and NACs are satisfied;

for v ∈ VR \ rng(ρV ) do
add new variable newVertv;
add a guard [newVertv ∈ N \ VertV];

end
for e ∈ ER \ rng(ρE ) do

add new variable newEdgee;
add a guard [newEdgee ∈ N \ EdgeV];

end

add variables NewV and NewE to the parameters;

add a guard
[
NewV =

{
newVertv1 , newVertv2 , . . .

}]
, vi ∈ VR \ rng(ρV );

add a guard
[
partition(NewV ,

{
newVertv1

}
,
{
newVertv2

}
, . . . )

]
, vi ∈ VR \ rng(ρV );

add a theorem [VertG ∩ NewV = ∅] to the guards;
add similar guards defining NewE;

add variables tNewV, tNewE, srcNew and tgtNew to the parameters;
add guards defining the types of the functions tNewV, tNewE, sourceNew and targetNew;

add a guard
[
tNewV =

{
vv1 7→ typetRV (v1), vv2 7→ typetRV (v2), . . .

}]
, vi ∈ VR \ rng(ρV );

add a guard
[
tNewE =

{
ee1 7→ typetRE (e1), ee2 7→ typetRE (e2), . . .

}]
, ei ∈ ER \ rng(ρE);

add a guard
[
srcNew =

{
ee1 7→ vsrcR(e1), ee2 7→ vsrcR(e2), . . .

}]
, ei ∈ ER \ rng(ρE);

add a guard
[
tgtNew =

{
ee1 7→ vtgtR(e1), ee2 7→ vtgtR(e2), . . .

}]
, ei ∈ ER \ rng(ρE);

add actions similar to the original translation;

Algorithm 1: Modified encoding of Graph Grammars in event-B

120 Towards Simpler Theorem-Proving of Graph Grammars with Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Example 3. The alternative translation of Rule 1 from Figure 2 would generate
the following event:

event r1
any n1 n2 // Matched nodes

nxt tok // Matched edges
newMsg newAct // Created edges
MatchV MatchE DelE NewE // Sets o f nodes and edges
tNewE sourceNew targetNew // Updates to f u n c t i o n s

where
// Nodes and edges have c o r r e c t types , s o u r c e s and t a r g e t s
@type n1 n1 ∈ VertG ∧ tGV(n1) = Node
@type n2 n2 ∈ VertG ∧ tGV(n2) = Node
@type nxt nxt ∈ EdgeG ∧ tGE(nxt) = Nxt ∧ srcG(nxt) = n1 ∧ tgtG(nxt) = n2
@type tok tok ∈ EdgeG ∧ tGE(tok) = Tok ∧ srcG(tok) = n1 ∧ tgtG(tok) = n1

// D e f i n i t i o n o f the matched and d e l e t e d e lements
@def MatchV MatchV = {n1, n2}
@def MatchE MatchE = {nxt, tok}
@def DelE DelE ⊆ EdgeG ∧ DelE = ∅

// Created nodes / edges are d i s t i n c t and new
@type newMsg newMsg ∈ N \ EdgeG
@type newAct newAct ∈ N \ EdgeG
@def NewE NewE ⊆ N ∧ NewE = {newAct, newMsg}
@grd dif f NewE partition(NewE, {newAct}, {newMsg})
theorem @grd newDisjointEdgeG EdgeG ∩ NewE = ∅

// The NACs are s a t i s f i e d
@grd NAC1 ¬(∃forbAct · forbAct ∈ EdgeG \ MatchE ∧

tGE(forbAct) = Act ∧
srcG(forbAct) = n1 ∧ tgtG(forbAct) = n1)

// Types , s o u r c e s and t a r g e t s o f c r ea t ed e lements
@type tNew E tNewE ∈ NewE → EdgeT
@type sourceNew sourceNew ∈ NewE → (VertG \ DelV) ∪ NewV
@type targetNew targetNew ∈ NewE → (VertG \ DelV) ∪ NewV

@def tNew E tNewE = {newAct 7→ Act, newMsg 7→ Msg}
@def sourceNew sourceNew = {newAct 7→ n1, newMsg 7→ n2}
@def targetNew targetNew = {newAct 7→ n1, newMsg 7→ n2}

end
then

@act E EdgeG := EdgeG ∪ NewE
@ a c t s r c srcG := srcG ∪ sourceNew
@act tg t tgtG := tgtG ∪ targetNew
@act tE tGE := tGE ∪ tNewE

end
end

A formal definition of this translation is left for future work, as well as proof
of its correctness with respect to graph rewriting. Essentially, graph morphisms
that make up rules are no longer explicitly encoded as pairs of functions. Instead,
they are implicitly encoded in the definitions of the events.

5 Discussion and Open Problems

A complete graph grammar for the token ring protocol was encoded with the
modified translation, comprising 6 events and the initialization. Eight invariants
were proven to hold for the system: there is always a single token edge; there
is at most one active node, and any active node also holds the token; edges of

G. Azzi, L. Ribeiro 121

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



types Tok and Act always have the same node as source and target; the instance
graph has a finite amount of nodes and edges, and in particular a finite amount
of edges of type Tok and Act. These are exactly the invariants proven in [3].

In order to prove that the invariants hold, Rodin generated a total of 135
proof obligations (POs). Of these, 102 were proven automatically by the tool,
leaving only 33 to be proven manually. These were divided in the same two
categories as [3]: POs that could be proven only by clicking on symbols and
using Rodin’s provers are classified as easy, while POs that required manually
instantiating or introducing hypotheses are classified as manual. The POs are
further divided into translation POs, which guarantee the type-correctness of
the generated model, and application POs which are related to the properties
specified by the user. Table 1 compares the number of POs for the original and
modified encodings.

In general, the difficulty of the proofs remained unchanged: the invariants
that were proven automatically almost always remained so, and the harder proofs
remained complex. The exception was proving that rules which modify the set of
nodes preserve the correct types for the source and target functions. The number
of assumptions available for each proof, however, has increased dramatically,
which might negatively impact the performance of automatic theorem provers,
especially with larger problems.

The number of application POs was reduced because two of the invariants
were specified as theorems, since they follow from the other invariants. Thus,
they generated only 2 POs, instead of 2 per rule. The increase in translation
POs is due to the increased number of guards, whose well-definedness needed to
be proven, which was done automatically by the tool.

Table 1. Proof obligations for the token ring example.

Encoding
Translation POs Application POs

POs Auto Easy Manual POs Auto Easy Manual

Original 64 60 1 0 56 14 18 24
Modified 91 87 0 4 44 15 5 24

The modified encoding had little impact in the difficulty of proving invariants.
A possible downside is the increase in assumptions that are available during any
given proof, which might hinder the performance of automatic provers. It may be
argued, on the other hand, that the models generated by the modified encoding
are easier to understand.

During the verification process, a few major difficulties were identified. These
are described below.

– Proving that elements of a particular type are not changed is nontrivial, es-
pecially when the invariant involves multiple elements of non-changed types,
despite it being intutively obvious. This is also a very common kind of proof,

122 Towards Simpler Theorem-Proving of Graph Grammars with Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



since there is typically only a few rules that modifies elements of any given
type.

– Proving that the types are preserved by rule application is nontrivial. The
type function before and after application are syntactically very different,
and proving that a preserved element has the same type is nontrivial. This
is, however, necessary for any property that quantifies over elements of a
particular type.

– Recurring patterns are hard to abstract. Despite many of the proofs being
very similar, small differences such as the names of variables make the copy-
ing of proofs in Rodin fail. The difficulty of abstracting these patterns as
lemmas and/or tactics results in a lot of repeated work.

6 Conclusions and Future Work

Within an ongoing effort to ease the approach of [11,3] for verifying properties of
graph grammars with NACs by theorem proving, this paper proposed a simple
modification. The encoding of rules in event-B was changed, being written in
terms of the concrete nodes and edges of the match instead of using graph mor-
phisms. Although the difficulty of the verification remained relatively unchanged,
the resulting model is arguably easier to understand.

During the verification of a graph grammar, some major roadblocks to the
application of this approach were identified. These could direct future research
in theorem proving graph grammars.

Currently, we are working on a formal definition of the modified translation,
as well as a proof of its correctness with respect to graph transformation. As
future work we also intend on adapting the modified translation to handle at-
tributed graphs, and on developing a theory for typed graphs in the Theory
Plug-in of the Rodin Platform to further ease the proofs. Another interesting
direction may be the encoding of graph grammars in other theorem provers such
as Isabelle/HOL and Coq, although this translation would be more involved
since the underlying logic doesn’t have a native notion of event or transition.

Acknowledgements

The authors would like to acknowledge the brazilian agencies CNPq and CAPES
for their support in the form of financial aid (VeriTes project/CNPq) and schol-
arships (CAPES).

References

1. Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, New York, NY, USA, 1st edition, 2010.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in event-b. International journal on software tools for technology trans-
fer, 12(6):447–466, 2010.

G. Azzi, L. Ribeiro 123

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



3. Simone A. C. Cavalheiro, Luciana Foss, and Leila Ribeiro. Theorem proving graph
grammars with attributes and negative application conditions. Submitted to The-
oretical Computer Science.

4. Simone A. C. Cavalheiro, Luciana Foss, and Leila Ribeiro. Specification patterns
for properties over reachable states of graph grammars. In Formal Methods: Foun-
dations and Applications: 15th Brazilian Symposium, SBMF 2012, Natal, Brazil,
September 23-28, 2012. Proceedings, pages 83–98. Springer, 2012.

5. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

6. Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, Annika
Wagner, and Andrea Corradini. Algebraic approaches to graph transformation:
Part ii: Single pushout approach and comparison with double pushout approach.
In Handbook of Graph Grammars, pages 247–312, 1997.

7. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with
negative application conditions. Fundamenta Informaticae, 26(3, 4):287–313, 1996.

8. Luiz C. L. Junior, Simone A. C. Cavalheiro, and Luciana Foss. Theorem proving
graph grammars: Strategies for discharging proof obligations. In Formal Methods:
Foundations and Applications: 16th Brazilian Symposium, SBMF 2013, Brasilia,
Brazil, September 29 - October 4, 2013, Proceedings, pages 147–162. Springer, 2013.

9. Leen Lambers. Certifying rule-based models using graph transformation. PhD
thesis, Berlin Institute of Technology, 2009.

10. Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Conflict detection for graph
transformation with negative application conditions. In Graph Transformations:
Third International Conference, ICGT 2006 Natal, Rio Grande do Norte, Brazil,
September 17-23, 2006 Proceedings, volume 4178 of Lecture Notes in Computer
Science, pages 61–76. Springer, 2006.

11. Leila Ribeiro, Fernando L. Dotti, Simone A. da Costa, and Fabiane C. Dillenburg.
Towards theorem proving graph grammars using event-b. Electronic Communica-
tions of the EASST, 30, 2010.

12. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation: Volume I. Foundations. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 1997.

124 Towards Simpler Theorem-Proving of Graph Grammars with Negative Application Conditions

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Abordagens Metodológicas para Ensino de Teoria da 

Computação, Linguagens Formais e Autômatos 

Ícaro Andrade Souza
1
 , Ecivaldo de Souza Matos

1
 e Débora Abdalla Santos

1
 

1 Departamento de Ciência da Computação – Universidade Federal da Bahia (UFBA) 
40170-110 – Salvador – BA – Brazil 

{icaro.andrade; ecivaldo; abdalla}@ufba.br  

Resumo. Teoria da Computação, Linguagens Formais e Autômatos, segundo as 

diretrizes curriculares nacionais (DCN), formam um conjunto de conteúdos 

fundamentais aos estudantes de cursos de graduação em Computação. 

Entretanto pesquisadores relatam a dificuldade de ensinar/aprender os 

conteúdos relacionados a essa área e buscam-se abordagens que amenizem os 

problemas vivenciados. Nesse sentido, este artigo apresenta um levantamento 

de estratégias de ensino de Teoria da Computação, Linguagens Formais e 

Autômatos, com objetivo de identificar abordagens didáticas em nível de 

graduação. 
Palavras-chave: Teoria da Computação, Linguagens Formais e Autômatos, 

Educação em Computação, Metodologias de Ensino. 

1 Introdução 

Segundo as Diretrizes Curriculares Nacionais [7] em vigor, para todos os cursos de 

graduação em Computação (bacharelado/licenciatura), entre os conteúdos curriculares 

exigidos na formação tecnológica e básica estão Teoria da Computação (TC), 

Linguagens Formais e Autômatos (LFA). 

Os conteúdos curriculares referentes à Teoria da Computação, Linguagens Formais 

e Autômatos referem-se aos fundamentos matemáticos da Computação, os quais 

analisam problemas que podem ser computados por um dado modelo teórico de 

Computação e, de uma forma geral, respondem quais são as capacidades e as 

limitações dos computadores [15] e [26].  

Pesquisadores relatam que esses conteúdos são de suma importância para a 

formação acadêmica dos estudantes de Computação [8]. Outros ressaltam que 

conteúdos curriculares existentes em TC e LFA dão suporte a outras disciplinas, 

também fundamentais aos cursos de Computação, a exemplo de Compiladores e 

Inteligência Artificial [11] e [25]. 

Desde meados do século passado os conteúdos dessa área já começaram a 

estabelecer-se como uma importante fundamentação da Ciência da Computação [9]. 

Entretanto, segundo Chakraborty, professores e pesquisadores já percebiam que a TC 

e LFA possuem temas difíceis de ensinar e aprender. 

Nesse sentido, Ezer e Trakhtenbrot [12] sinalizam que uma das habilidades-chave 

necessária aos estudantes de disciplinas referentes aos tópicos de TC e LFA é aptidão 

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



para raciocínio matemático preciso, mas isso tem sido difícil e até mesmo assustador 

para os estudantes. Pirovani e Mataveli [21] argumentam que os estudantes 

consideram os tópicos dessas disciplinas áridos, abstratos, complexos e desvinculados 

de suas atividades profissionais, o que contribui para reduzir o interesse e a motivação 

pelo seu aprendizado. Borges [6] ressalta que o modo tradicional de ensino não 

consegue motivar os estudantes a se interessarem pela disciplina, entre outras razões, 

pois para esses estudantes não é clara a importância de certos conteúdos para a sua 

formação. 

Aguiar e Oeiras [2], afirmam que ocorre ―baixo uso de ferramentas computacionais 

de visualização destinadas a superar dificuldades de aprendizagem em Teoria da 

Computação‖, fato que, segundo eles, também pode contribuir para as dificuldades 

apresentadas por estudantes e professores. Outros pesquisadores, como Pirovani e 

Mataveli [21] declaram ainda que ―professores têm dificuldades de encontrar formas 

alternativas para ensinar o conteúdo e tornar a disciplina de Teoria da Computação 

mais interessante para os alunos‖. O que, de acordo com esses autores, pode ser 

considerado como um ponto-chave ao desencadeamento de parte dos problemas 

existentes no ensino dos conteúdos de TC. 

Tendo em vista os problemas relacionados ao ensino de conteúdos curriculares 

referentes à Teoria da Computação, Linguagens Formais e Autômatos, a pesquisa 

parcialmente relatada neste artigo visa identificar e analisar (i) recursos 

computacionais e (ii) metodologias educacionais para o ensino de conteúdos 

curriculares de Teoria da Computação, Linguagens Formais e Autômatos. 

Neste artigo apresentamos os resultados parciais desta pesquisa: identificação e 

análise preliminar de metodologias educacionais para o ensino de Teoria da 

Computação, Linguagens Formais e Autômatos em cursos de graduação em 

Computação. 

2 Metodologia 

Este artigo relata o processo e os resultados da identificação e análise de 

metodologias/métodos de ensino de conteúdos curriculares de Teoria da Computação, 

Linguagens Formais e Autômatos, cuja investigação foi estruturada em duas fases: (i) 

levantamento de trabalhos sobre metodologias educacionais para o ensino de tópicos 

relacionados à TC e LFA e (ii) análise dos trabalhos mapeados.  

A primeira fase correspondeu a uma pesquisa exploratória com objetivo de mapear 

os trabalhos relacionados a metodologias educacionais referentes à área; a segunda 

fase tratou da análise dos trabalhos encontrados na primeira fase, buscando identificar 

e analisar as abordagens existentes para o ensino de conteúdos relacionados a Teoria 

da Computação, Linguagens Formais e Autômatos. 

Na pesquisa exploratória foram utilizados os seguintes termos de busca: ensino; 

Teoria da Computação; Linguagens Formais. Vale destacar que os termos foram 

buscados em português e em inglês. Foram consideradas seis fontes de dados: 

Biblioteca Digital Brasileira de Teses e Dissertações (BDTD/IBICT); Biblioteca 

Digital Brasileira de Computação (BDBComp/SBC); Portal de Periódicos da Capes; 

Web of Science; ACM Digital Library; e a Revista Brasileira de Informática na 

Educação (RBIE). As bases foram selecionadas por indexarem a maioria dos veículos 

126 Abordagens Metodológicas para Ensino de Teoria da Computação, Linguagens Formais e Autômatos

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



qualificados na área de Ciência da Computação, bem como pela disponibilidade e 

acessibilidade.  

Para o desenvolvimento da pesquisa exploratória foram definidos os seguintes 

critérios de seleção: trabalhos de pesquisa, desenvolvimento tecnológico e/ou relato 

de experiência publicados entre 2000 a 2015; escrito em português, inglês ou 

espanhol; acessíveis gratuitamente por pelo menos uma das fontes selecionadas; 

apresentar alguma abordagem que possibilite ensinar tópicos referentes aos conteúdos 

curriculares de Teoria da Computação, Linguagens Formais e Autômatos. 

Buscando identificar e analisar metodologias/métodos de ensino da área, foram 

pesquisados 2.965 trabalhos e após sucessivos refinamentos foram selecionados 15 

trabalhos, os quais apresentavam abordagens metodológicas para ensino de TC e 

LFA. Essa análise foi desenvolvida por meio da leitura completa dos trabalhos, 

identificando cada abordagem relatada nos textos e extraindo as seguintes 

informações: tipo de abordagem, conteúdos relacionados, ano de publicação e breve 

resumo descrevendo o método/metodologia. 

3 Resultados 

Nesta seção são apresentados os resultados parciais obtidos a partir da primeira e 

segunda fase do desenvolvimento da pesquisa. Esses resultados referem-se à 

identificação e análise preliminar dos trabalhos relacionados à área e das abordagens 

encontradas que possibilitam ensinar conteúdos curriculares de Teoria da 

Computação, Linguagens Formais e Autômatos. 

3.1 Pesquisa Exploratória 

A pesquisa exploratória resultou em 2.965 trabalhos referentes a recursos 

computacionais e/ou metodologias/métodos de ensino sobre a área. É importante 

salientar que foram utilizados, em algumas bases de dados, filtros secundários 

resultando em 2020 trabalhos para serem analisados.  

Após a análise dos respectivos títulos, resumos e palavras-chave, 86 artigos foram 

considerados relevantes para a pesquisa. Entretanto, verificou-se que dentre os 86 

artigos selecionados, alguns estavam duplicados, a partir daí foram eliminados os 

trabalhos ambíguos, restaram 63 artigos selecionados. Dentre os 63 trabalhos 

selecionados, 15 trabalhos descrevem abordagens metodológicas para ensino de 

tópicos referentes à TC e LFA e 48 apresentam recurso(s) computacional(is) 

desenvolvidos para auxiliar o ensino de conteúdos relacionados a TC e LFA. 

3.2 Abordagens Metodológicas 

Dentre as 15 produções encontrados (Tabela 1), três são estudos brasileiros 

disponíveis em português e 12 são artigos em inglês. Esses trabalhos foram 

classificados de acordo com os conteúdos abordados; a(s) teoria(s) ou princípio(s) de 

ensino/aprendizagem que são seguidos (abordagens teórico-metodológicas); e a 

utilização de recursos computacionais como ferramentas de treinamento e/ou 

I. Souza, E. Matos, D. Santos 127

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



visualização. Essas abordagens serão apresentadas de acordo aos conteúdos 

abordados nas subseções abaixo.  

Tabela 1. Abordagens metodológicas referentes ao ensino de Teoria da Computação, 

Linguagens Formais e Autômatos.  

1Produção 2Conteúdo 3Teoria/Princípio 
4Recursos  

Computacionais 

Ruehr [22] 
Autômatos, Árvores 

e DAG 
- JFLAP e LRR 

Furtado [14] 
Autômatos e 

Compiladores 
- - 

Chesñevar; González e 

Maguitman [10] 
TC 

Teoria de aprendizagem 

construtivista e 

princípios da 

aprendizagem 

significativa 

Minerva, Deus Ex 

Machina, JFLAP e 

Turing Machines 

 Sá e Bittencourt [23] Autômatos 
Avaliação, estruturação 

e solução de problemas 
- 

 Verma [27] Autômatos Finitos - JFLAP e LRR 

 Ezer e Trakhtenbrot 

[12] 
Pumping Lemma - - 

 Ezer e Trakhtenbrot 

[13] 
Expressões 

regulares 
- - 

Sigman [25] TC 

Técnica de 

aprendizagem por 

descoberta e 

aprendizagem baseada 

em problemas 

- 

Arbe; Ortega e Conde 

[3] 
Expressões 

regulares 
- - 

Korte, et al. [17] Autômatos 
Abordagem 

construcionista 
- 

Ben-Ari [5] 
Concorrência, 

Verificação e NDE 
- Jspin e SpinSpider 

Armoni, Lewenstein e 

Ben-Ari [4] 
NDE - - 

Merceron [20] 
Autômatos Finitos 

Determinísticos 
- - 

Scarton e Aluisio [24] TC - 
Learning objects e 

MERLOT3 
Knobelsdorf, Kreitz e 

Böhne [16] 
TC 

Abordagem de 

aprendizagem cognitiva 
- 

                                                           
1
 Referência do artigo que descreve a abordagem. 

2
 Conteúdo abordado pelo método ou metodologia proposta. 

3
 Teoria(s)/Princípio(s) cuja abordagem se baseia. 

4
 Recursos computacionais que são utilizados pela abordagem. 

128 Abordagens Metodológicas para Ensino de Teoria da Computação, Linguagens Formais e Autômatos

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



3.2.1 Ensino de Teoria da Computação 

Dentre as produções encontradas, quatro tratam especificamente do ensino da 

disciplina de Teoria da Computação. Buscam tornar a disciplina mais dinâmica, 

fazendo com que os estudantes se tornem mais ativos/participativos do processo de 

ensino/aprendizagem. A construção de cada uma dessas abordagens foi baseada em 

teoria/princípio de ensino/aprendizagem específicos.  

A abordagem desenvolvida por Chesñevar, González e Maguitman [10], utiliza a 

combinação de diferentes estratégias de ensino a fim de tornar tópicos relacionados à 

Teoria da Computação mais interessantes e atrativos para os estudantes. Para tal essa 

metodologia utiliza a aprendizagem construtivista e alguns dos princípios da 

aprendizagem significativa. A abordagem propõe a utilização de diversos recursos 

(página web; slides; exercícios e recursos computacionais) para complementar o 

ensino tradicional e estimular a percepção dos estudantes da importância do conteúdo 

de Teoria da Computação na sua formação profissional. 

Sigman [25] descreve a construção de um curso utilizando a técnica de 

aprendizagem por descoberta, conhecida como Método de Moore [29]. Essa técnica 

representa uma família de abordagens de aprendizagem baseada em problemas, que 

visam envolver de forma direta o estudante ao conteúdo estudado.  As aulas são 

realizadas com uso de questões norteadoras permitindo que os estudantes descubram 

suas próprias capacidades para criar e aprender. Segundo o autor essa abordagem 

permitiu aos estudantes desenvolver as habilidades necessárias para encarar a 

matemática contida nos conteúdos relacionados à TC e LFA. 

Outra abordagem nesse sentido tem o objetivo de tornar os alunos protagonistas 

dos processos de ensino e de aprendizagem, por meio da utilização de learning 

objects e MERLOT3 [24]. O seu método incentiva os alunos a elaborarem conteúdos 

que estendam ou aprofundem os tópicos abordados em sala de aula, por fim o método 

propõe que os envolvidos apresentem o conteúdo produzido para a turma. 

A última abordagem referente à TC descreve modificações pedagógicas em um 

curso de Teoria da Computação realizada na Universidade de Potsdam na Alemanha 

[16]. Tais modificações são motivadas por uma abordagem de ―aprendizagem 

cognitiva‖, com objetivo de mostrar a aplicabilidade dos conteúdos e tornar mais fácil 

a aprendizagem. A proposta baseia-se em dividir a disciplina em três partes: aulas 

tradicionais, aulas tutoriais/palestras e aulas de exercícios. Tendo como diferencial as 

aulas tutoriais, em que os estudantes são incentivados a perguntar e discutir questões 

que ainda não estão claras após as sessões de aulas tradicionais. 

3.2.2 Ensino de Autômatos 

Seis abordagens metodológicas foram encontradas para ensino de Modelos 

Computacionais (Autômatos). Entretanto, duas delas tratam especificamente dos 

Autômatos Finitos, que são os reconhecedores do nível/tipo três da hierarquia de 

Chomsky. As demais abordagens tratam de toda a hierarquia, que é composta pelos: 

Autômatos Finitos (AF), Autômatos de Pilha (AP) e as Máquinas de Turing (MT). 

Uma das abordagens específicas para Autômatos Finitos é a de Verman [27], que 

visa ilustrar a amplitude dos conceitos de AF através da integração das seguintes 

ferramentas de visualização: Java Formal Languages and Automata Package 

I. Souza, E. Matos, D. Santos 129

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



(JFLAP) e Laboratory for Rapid Rewriting (LRR). Foi desenvolvido um material 

instrucional (conjunto de ferramentas pedagógicas e tecnológicas) que propõe, no 

primeiro momento, realizar uma revisão dos conceitos de Linguagens Formais e 

Autômatos, demonstrando suas aplicações e a variedade de modelos computacionais 

existentes. Em paralelo à revisão, o material sugere a introdução dos conceitos de 

computabilidade e conta com um conjunto de problemas que promove maior 

interação e experimentação dos estudantes com os conteúdos específicos. 

A segunda abordagem é a proposta por Merceron [20], a qual relata a construção 

de um modelo para ensinar/aprender Autômatos Finitos Determinísticos (AFD). O 

autor relata que em sua instituição de ensino alguns estudantes não possuem 

experiência com programação, o que torna mais difícil motivá-los a estudar. Assim 

foi proposto um método com três passos para auxiliar os estudantes a projetarem 

AFD. O autor relata que o professor e o estudante serão guiados a resolver os modelos 

propostos segundo a ordem especificada e, assim, através de cada solução o aluno 

construirá novos conhecimentos.  

No tocante às abordagens desenvolvidas para ensino dos Autômatos referentes à 

Hierarquia de Chosmky, Ruehr [22] propôs uma série de estratégias didáticas para 

tornar o curso mais agradável e interessante para os estudantes. O foco dessa 

abordagem é melhorar a aprendizagem, aumentando a visualização e a interação da 

disciplina, através das ferramentas JFLAP e LRR. Essa proposta busca ilustrar os 

modelos e conceitos discutidos durante as aulas, incluindo demonstrações de 

aplicações recentes dos conceitos referentes aos variados tipos de autômatos, 

incluindo também árvores e Grafos Acíclicos Dirigidos (DAG).  Tal abordagem busca 

desenvolver aulas práticas em laboratório utilizando um conjunto de problemas com 

soluções. 

A metodologia proposta por Furtado [14] refere-se à criação de uma nova 

disciplina para o ensino de Linguagens Formais e Autômatos, vinculada 

explicitamente ao ensino de Compiladores. Tal disciplina tem como objetivos 

principais apresentar uma visão geral do processo de compilação, sob o ponto de vista 

da implementação; e abordar conteúdos relacionados à Teoria da Computação, sob a 

ótica da Teoria das Linguagens Formais, enfatizando seus aspectos teóricos e suas 

aplicações. Com a abordagem proposta, o autor espera tornar os conteúdos 

relacionados a essa área mais agradáveis, aumentando o interesse dos estudantes pelos 

aspectos teóricos da computação e tornando o aprendizado mais efetivo.  

Sá e Bittencourt [23] apresentam uma proposta curricular para a disciplina de 

Teoria da Computação. O objetivo geral dessa proposta é apresentar os principais 

modelos computacionais clássicos sob um ponto de vista unificado, baseado na 

avaliação, estruturação e solução de problemas. Para tal essa proposta visa estruturar 

o conteúdo programático para a disciplina de Teoria da Computação, buscando 

motivar o estudo de conceitos ligados à computação (algoritmo, decidibilidade, 

complexidade, etc) de maneira formal, utilizando problemas como um "plano de 

fundo" para introduzir os modelos computacionais. Esperam que através dessa 

estruturação, os professores passem a demonstrar possíveis relações entre problemas 

fundamentais a Ciência, com questões reais do dia-a-dia, motivando e elucidando a 

importância de tais conteúdos.  

A última abordagem encontrada referente os modelos computacionais descreve um 

método para adquirir/aperfeiçoar habilidades na criação de modelos teóricos [17]. O 

130 Abordagens Metodológicas para Ensino de Teoria da Computação, Linguagens Formais e Autômatos

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



método pode ser utilizado para o ensino de AF, AP, MT e também pode ser estendido 

para o ensino de gramáticas entre outros tópicos. A proposta visa desenvolver 

aprendizagem através da construção de jogos, utilizando uma abordagem 

construcionista. Os autores relatam que com essa abordagem, os estudantes aprendem 

fazendo, o que potencialmente contribui com a compreensão. Além de permitir que os 

estudantes tenham participação ativa e poder de personalização, o que pode contribuir 

com o aumento da motivação e consequentemente com o seu desempenho na 

disciplina. 

3.2.3 Ensino de Expressões Regulares 

Ezer e Trakhtenbrot [13] relatam a dificuldade de ensinar a caracterização algébrica 

de linguagens regulares no curso de Teoria dos Autômatos. Os autores relatam o 

desenvolvimento de uma série de exemplos intuitivos que podem auxiliar os 

estudantes na compreensão de tais conteúdos e na superação das dificuldades. Esse 

material é composto por exemplos que demonstram erros típicos em ―provas‖, 

seguidos de discussões que busca explicar os erros e identificar suas prováveis causas. 

Com a abordagem os autores esperam envolver os alunos na construção ativa do 

conhecimento adequado. 

A segunda abordagem metodológica encontrada para ensino de expressões 

regulares na disciplina de Linguagens Formais e Autômatos foi descrita por Arbe, 

Ortega e Conde [3]. Tal proposta baseia-se em demonstrar aos estudantes a 

aplicabilidade do conteúdo em diferentes contextos, ressaltando a sua utilização em 

aplicações web de três camadas. O método apresentado consiste em uma série de 

exercícios práticos, de modo que os estudantes desenvolvam fragmentos de código 

em JavaScript, utilizando notação de expressões regulares. Os autores relatam que 

―em comparação com abordagens mais clássicas, nosso método melhora 

significativamente a familiarização de alunos com a utilidade prática imediata dos 

conceitos envolvidos na definição de Linguagens Formais‖ [3]. 

3.2.4 Ensino de Não-Determinismo 

Dois trabalhos foram encontrados referentes a abordagens de ensino para Não-

Derterminismo. O primeiro relata a construção de um tutorial com objetivo de 

familiarizar os leitores do uso do modelo Spin no ensino de conceitos como: 

concorrência, verificação e não-determinismo [5] . O autor apresenta um ambiente de 

desenvolvimento integrado (IDE), desenvolvido por ele, chamado o JSpin. E em 

seguida, apresenta um tutorial que utiliza o JSpin e o software de visualização 

SpinSpider para realizar o desenvolvimento e verificação de programas concorrentes. 

Uma vez que os programas concorrentes são definidos em termos de Autômatos 

Finitos Não-Determinísticos, o autor utiliza o desenvolvimento desses programa para 

ensinar Não-Determinismo. 

A segunda abordagem identificada refere-se ao estudo para modificação no ensino 

do Não-Determinismo [4]. Os autores relatam que em geral a forma de explicação de 

Autômatos Finitos Não-Determinísticos (AF-ND) pode não ser a mais apropriada. 

Acredita-se que sem uma abordagem apropriada os alunos tendem a desenvolver uma 

I. Souza, E. Matos, D. Santos 131

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



imagem de um AF-ND como uma máquina consistente, que percorre todos os 

caminhos possíveis da árvore até encontrar um caminho de aceitação. Apresenta-se, 

então, uma intervenção explícita, que pode afetar significativamente os modelos 

mentais dos alunos de TC E LFA, no sentido de melhorar a percepção do 

comportamento Não-Determinístico. 

3.2.5 Ensino do Lema do Bombeamento 

Com base na análise da típica dificuldade no ensino do Lema do Bombeamento, Ezer 

e Trakhtenbrot [12] relata o desenvolvido de uma série de exemplos que possibilitam 

auxiliar o processo de compreensão desse conteúdo. Esses exemplos são utilizados no 

curso através de um ambiente virtual de aprendizagem, onde inicia-se discussões 

conduzidas pelo tutor sobre o raciocínio comum referentes a problemas relacionados 

com o tema. O objetivo dessas discussões é destacar erros típicos, e encontrar a sua 

causa. Essa abordagem visa envolver os alunos na construção ativa de compreensão 

adequada, confrontando seus equívocos. 

3.3 Análise das Metodologias Identificadas 

Como visto na introdução deste artigo, diversos pesquisadores têm relatado 

dificuldades no ensino de TC e LFA. Entretanto, com o desenvolvimento dessa 

pesquisa, identificou-se poucas produções que evidenciem abordagens metodológicas 

que busquem amenizar tais problemas. Esses dados demonstram que essa é uma área 

pouco explorada, diante dos problemas que são frequentemente relatados. 

Dentre as 15 abordagens encontradas, no geral, os autores têm evidenciado que a 

forma tradicional de ensino não tem sido suficientemente eficaz para motivar e 

auxiliar os alunos a desenvolverem um conhecimento adequado e os trabalhos 

propõem modificações que tornem o estudante mais participativo e os conteúdos mais 

práticos e relacionados aos temas do dia-a-dia.  

Segundo Matos e Silva [19] ―a maioria dos artigos apresentados em conferências 

renomadas da área, como a conferência internacional do SIGCSE – ACM Special 

Interest Group on Computer Science Education, são reflexões acerca de experiências 

e introspecções dos seus autores‖. Com o desenvolvimento dessa pesquisa torna-se 

evidente tal afirmação e ressalta a importância de conceber o Ensino de Computação 

(ou a Educação em Computação) enquanto área de pesquisa, fazendo com que essa 

nova área possua um diálogo constante e crítico com as ciências da educação [18]. 

4 Considerações Finais 

Este artigo apresentou 15 abordagens metodológicas descritas na literatura científica 

entre 2000 e 2014, para o ensino de tópicos referentes à Teoria da Computação, 

Linguagens Formais e Autômatos em cursos de graduação em Computação. Tais 

abordagens foram desenvolvidas a fim de amenizar os problemas relacionados ao 

ensino/aprendizagem da área, buscando melhorar a apreciação dos estudantes quanto 

ao papel da Teoria da Computação e desenvolver uma aprendizagem ativa. 

132 Abordagens Metodológicas para Ensino de Teoria da Computação, Linguagens Formais e Autômatos

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



As metodologias/métodos propostas evidenciam a necessidade de modificar o 

ensino/aprendizagem dos tópicos relacionados à TC e LFA, tornando os estudantes 

mais participativos e os conteúdos mais práticos e relacionados aos temas do dia-a-

dia. Tais informações ressaltam a importância de conceber o Ensino de Computação 

(ou a Educação em Computação) enquanto área de pesquisa, fazendo com que essa 

nova área possua um diálogo constante e crítico com as ciências da educação.  

Como trabalho futuro, pretende-se aprofundar as análises por meio de 

experimentos controlados e avaliação da interação tecnológica com uma ou mais 

propostas metodológicas. Nesse processo espera-se ao final desta pesquisa apresentar 

outra(s) possibilidade(s) metodológica(s) para o ensino de conteúdos curriculares de 

Teoria da Computação, Linguagens Formais e Autômatos. 

Referências 

1. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. 

Mol. Biol. 147, 195--197 (1981). 

2. Aguiar, S. O., Oeiras, J. Y. Y. : Ambiente Moodle de auxílio ao ensino e 

aprendizagem em Linguagens Formais. XVIII Workshop sobre Educação em Computação, 

818--827, (2010). 

3. Arbe, J. M. B., Ortega, A. S., Conde, J. I. M.: Formal languages through web forms 

and regular expressions. ACM SIGCSE Bulletin, v. 39, n. 4, 100--104 (2007). 

4. Armoni, M., Lewestein, N., Ben-Ari, M.: Teaching students to think 

nondeterministically. ACM SIGCSE Bulletin, 4--8 (2008).  

5. Ben-Ari, M.: Teaching Concurrency and Nondeterminism with Spin. Proceedings of 

the 12th annual SIGCSE conference on Innovation and technology in computer science 

education, 363--364 (2007).  

6. Borges, M.: Avaliação de uma metodologia alternativa para a aprendizagem de 

programação. VIII Workshop de Educação em Computação-WEI (2000). 

7. Brasil.: Diretrizes Curriculares Nacionais para os cursos de graduação em 

Computação. 

http://portal.mec.gov.br/index.php?option=com_content&id=12991:diretrizes-curriculares-

cursos-de-graduacao. 

8. Chakraborty, P., Saxena, P. C., Katti, C. P.: Fifty years of automata simulation: a 

review. ACM Inroads, v. 2, n. 4, 59--70 (2011). 

9. Chakraborty, P., Saxena, P. C., Katti, C. P.: Automata simulators: Classic tools for 

computer science education. British Journal of Educational Technology, v. 43, n. 1, 

2011—2013 (2012).  

10. Chesñevar, C. I., González, M. P., Maguitman, A. G.: Didactic strategies for 

promoting significant learning in formal languages and automata theory. ACM SIGCSE 

Bulletin, v. 36, n. 3, 7--11 (2004).  

11. Dognini, M. J., Luís, A., Raabe, A.: EduLing - Software Educacional para 

Linguagens Regulares. XIV Simpósio Brasileiro de Informática na Educação – NCE,  

IM/UFRJ (2003). 

12. Ezer, J. G., Trakhtenbrot, M.: Challenges in teaching the pumping lemma in automata 

theory course. ACM SIGCSE Bulletin, v. 37, n. 3, 369 (2005).  

13. Ezer, J. G., Trakhtenbrot, M.: Algebraic Characterization of Regular Languages: How 

to Cope With All These Equivalences ? ACM SIGCSE Bulletin, v. 38, n. 3 (2006). 

14. Furtado, O. J. V.: O ensino de Linguagens Formais vinculado ao ensino de 

Compiladores. XI Workshop de Educação em Computação (2003). 

I. Souza, E. Matos, D. Santos 133

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



15. Hopcroft J. E., Motwani, R., Ullman, J. D.: Introduction to Automata Theory, 

Languages and Computation. 3rd Editio (2006). 

16. Knobelsdorf, M., Kreitz, C., Bohne, S.: Teaching Theoretical Computer Science 

using a Cognitive Apprenticeship Approach Categories and Subject Descriptors. SIGCSE 

’14: Proceedings of the 45th ACM technical symposium on Computer science education,  

67--72 (2014). 

17. Korte, L., Anderson, S., Good, J., Pain, H.: Learning by Game-Building : A Novel 

Approach to Theoretical Computer Science Education. 12th annual SIGCSE conference on 

Innovation and technology in computer science education, v. 39, 53--57 (2007). 

18. Lister, R.: Teaching-oriented faculty and computing education research. ACM 

Inroads, v. 3, n. 1, 22--23 (2012).  

19. Matos, E., SILVA, G. da.: Currículo de licenciatura em computação: uma reflexão 

sobre perfil de formação à luz dos referenciais curriculares da SBC. Anais do XXXII 

Congresso da Sociedade Brasileira de Computação - XX Workshop sobre Educação em 

Computação - WEI (2012).  

20. Merceron, A.: Design Patterns to Support Teaching of Automata Theory. ITiCSE ’09: 

Proceedings of the 14th annual ACM SIGCSE conference on Innovation and technology in 

computer science education, 60558 (2009).  

21. Pirovani, J. C.; Mataveli, G. V.: Estudo e adaptação de software para o ensino de 

Linguagens Formais e Autômatos. Revista Brasileira de Informática na Educação, v. 21, 

53--68, (2014). 

22. Ruehr, F.: Strategies in the theory of computation. Journal of computing sciences in 

colleges, v. 17, n. 2,  93--105 (2001). 

23. Sá, C. C. DE, Bittencourt, G.: Uma Proposta para Disciplina de Teoria da 

Computação. XII Workshop sobre Educação em Informática (2004). 

24. Scarton, C. E., Aluisio, S.: O uso do MERLOT por Alunos de Teoria da Computação 

para a Criação de Materiais de Ensino-Aprendizagem. XIX Workshop sobre Educação em 

Computação (2011). 

25. Sigman, S.: Engaging Students in Formal Language Theory and Theory of 

Computation. SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium on 

Computer science education, 450--453 (2007). 

26. Sipser, M.: Introduction to the Theory of Computation. 2nd Editio (2005). 

27. Verma, R. M.: A visual and interactive automata theory course emphasizing breadth 

of automata. ACM SIGCSE Bulletin, v. 37, n. 3, 325--329 (2005).  

28. Vijayalaskhmi, M.; Karibasappa, K.: Activity based teaching learning in formal 

languages and automata theory-An experience (2012). 

29. Parker, G.: Getting more from Moore. Primus, v. 2, 235--246 (1992). 

134 Abordagens Metodológicas para Ensino de Teoria da Computação, Linguagens Formais e Autômatos

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Calculation and Applications of
Concurrent Rules

Jonas Santos Bezerra, Leila Ribeiro

Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, Brazil

Email: {jsbezerra,leila}@inf.ufrgs.br

Abstract. Graph Grammars are a suitable formalism to model and rea-
son about complex systems. In this paper, we will review a particular
static analysis technique, the calculation of concurrent rules, that can
be used to capture the cumulative effects of applying several rewriting
rules, which helps determine whether a graph grammar behaves as in-
tended. Also, we show the problem of combinatorial explosion that can
occur when calculating the concurrent rules and some strategies that can
be used to manage it by constraining the problem domain and filtering
undesired rules.

1 Introduction

Graph Grammars are a suitable formalism to model and reason about complex
systems, providing both a visual modelling language and formal analysis tech-
niques [7]. The states of a system are modelled as graphs, while the actions which
can alter these states are modelled as graph transformation rules that work by
applying local modifications into graphs.

Given its formalism, there are several analysis techniques that can be per-
formed over a Graph Grammar, including the concurrent rule construction,
which can be used to summarize the application of a sequence of several rules
in one single step.

In this paper, we specifically show how to construct concurrent rules to help
the modeller of a system to check whether the designed model behaviours as
intended, and also which kind of unexpected behaviours could emerge from the
system, specially when dealing with concurrency.

Also, we address the problem of combinatorial explosion inherent to the con-
struction of concurrent rules by enriching the graph grammar with negative ap-
plication conditions and graph constraints, which are used to restrict the problem
domain. The concurrent rule construction and the strategies presented here are
being implemented (together with other analysis techniques) in Verigraph1: A
software specification and verification tool based on graph rewriting.

1 Source Code: github.com/verites/Verigraph,
Documentation: verites.github.io/Verigraph

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



This work is organized as follows: In section 2 we review the basic definitions
under the graph transformation theory. Section 3 introduces a running example
that will be used to demonstrate the concepts and constructions presented in
this paper. Section 4 presents the concurrent rule analysis technique, after that
section 5 presents the strategies to address the problem of combinatorial explo-
sion while filtering more meaningful concurrent rules. Finally, section 6 presents
the conclusions and future work.

2 Algebraic Graph Transformation

In this section, we review the basic definitions of algebraic graph transformation
according to the double pushout approach [3]. These definitions are standard in
the area, and more details can be found in [2].

A graph is a tuple G = (V,E, s, t) where: V is a set of nodes, E is a set of
Edges and s, t : E → V are two total functions that map each edge in E to its
source and target in V .

Given two graphs G1, G2 with Gi = (Vi, Ei, si, ti) for i in [1, 2], a graph
morphism f : G1 → G2 between them is a pair f = (fV , fE) where fV : V1 → V2
and fE : E1 → E2 are total functions that preserve the source and target
functions, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE .

A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG) where VTG
and ETG are called the node and edge type alphabets, respectively.

A typed graph is a pair GT = (G, type) consisting of a graph G and a graph
morphism type : G→ TG.

Given two typed graphs GT1 , G
T
2 with GTi = (Gi, typei) for i in [1, 2], a typed

graph morphism f : GT1 → GT2 is a graph morphism f : G1 → G2 such that
type2 ◦ f = type1.

Unless explicitly stated otherwise, for the rest of this paper we will work with
typed graph and typed graph morphisms only, thus we will omit the mention to
the typing where it does not damage the content.

In the DPO approach, a graph rule2 p = (L
l←− K r−→ R) is a span of injective

graph morphisms l : K → L and r : K → R where the graphs L, K and R are
called the left-hand side (lhs), gluing graph and right-hand side (rhs).

Graph rules are used to locally modify graphs in a process called graph trans-
formation: when a morphism from the lhs of a rule is found on a graph, we delete
the elements of L that are not in K and add the elements of R that are not in
K, as long as the result is still a graph (elements in K are always preserved).

L

m

��

K
loo r //

k
��

R

m′

��

G

(1)

D
f

oo
g

// H

(2)

Given a graph transformation rule

p = (L
l←− K r−→ R) and a graph G

with a graph morphism m : L→ G,
called match, a direct graph transfor-

mation G
p,m
==⇒ H from G to a graph H is a double-pushout (DPO) diagram in

the category GraphsTG.

2 Also called graph transformation rule or graph production.

136 Calculation and Applications of Concurrent Rules

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The existence of the DPO-diagram, and consequently of the graph trans-
formation, depends on the satisfiability of the so called gluing conditions: (i)
identification condition, the match does not identify a deleted element with an-
other that is preserved or also deleted; (ii) dangling condition, the match does
not delete a node without deleting all of its incident edges.

Besides the match and the gluing conditions, other constructs can be used
to impose more conditions to the existence of a graph transformation, here we
present two of such constructs: negative application conditions and graph con-
straints.

N

|
q
  

L

m

��

noo

G

A (left) negative application condition (NAC for short)

over a graph rule p = (L
l←− K r−→ R) is of the form NAC(n),

where n : L→ N is an arbitrary graph morphism. A match
m : L→ G of a rule p satisfies NAC(n) on L (written
m |= NAC(n)) iff @ q : N → G with q injective and q ◦n = m.

Given a set NACL = {NAC(ni)|i ∈ I} of left NACs, a match m : L→ G
satisfies NACL, iff m |= NAC(ni) ∀i ∈ I. The right NACs are defined analo-
gously for the right-hand side of a graph rule and the comatch m′ : R→ H of
the correspondent graph transformation.3. A graph rule with NACs is then a
pair (p,N) where p is a production and N is a set of NACs for p.

A positive atomic constraint is of the form PC(a), where a : P → C is a
graph morphism. A graph G satisfies PC(a) if for every injective graph mor-
phism p : P → G there is at least one injective graph morphism q : C → G
such that p = q ◦ a. A negative atomic constraint is defined analogously, but the
satisfiability condition is that there is no injective graph morphism q : C → G
such that p = q ◦a. A graph constraint is then defined as a boolean formula over
atomic constraints.

A typed graph grammar with NACs and graph constraints is a tuple GG =
(TG,G0, P, C) where TG is the type graph, G0 is the initial graph (typed over
TG), P is a set of productions with NACs and C is a set of graph constraints.
We will call it graph grammar for short.

3 Modelling with Graph Grammars

We use a Graph Grammar that models a client-server scenario for an e-
mail application to illustrate our examples. This system has four actions: (i)
sendMessage: client sends message to server, (ii) getData: data is obtained from
server, (iii) receiveMessage: server sends message to client, (iv) deleteMessage:
client obtains data from received message / message is destroyed.

The rules for this grammar are depicted in Fig 1, the gluing graphs are
omitted, but can be seen as the nodes with the same figures and edges with the
same numbers that appear in both LHS and RHS of each rule (a number before
a colon represents the mapping of an edge that appears in both sides, while a

3 Verigraph takes only rules with left NACs as input, however they can always be
transformed into right NACs, which is necessary for our concurrent rule construction.

J. Bezerra, L. Ribeiro 137

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



number after a colon or without a colon represents the type of the edge). The
type and initial graphs were omitted due to lack of space4.

Fig. 1. Graph rules for Server

4 Concurrent Rules

Graph Grammars that represent real systems usually have a considerable number
of rules, possibly making it difficult to the modeller to foresee all possible rule
interactions. Therefore it is important to have analysis techniques to address
this issue, as well as tools that implement them.

We said earlier that the aim of calculating the concurrent rules is to summa-
rize the combined effects of applying the transformations induced by a sequence
of graph rules. Here we present how this can be done.

A rule sequence is a list containing rules of a grammar in an specific or-
der in which the modeller wants them to be applied. Given a rule sequence
r = p0, . . . , pn−1, pn , the construction of its correspondents concurrent rules is
done by recursively combining pairs of subsequent rules, where the pairwise
combination is defined as follows [2,4]:

Ni Nj

L′c

l′

��

ni

OO

(3)

K ′c

��

oo //

(1)

R′c
e1

  a

Ln
e2

~~

nj

OO

Kn

��

oo //

(2)

Rn

��

(4)

L Cc
lc

oo
rc

// E Cn
ln

oo
rn
// R

K

kc

hh

kn

66

(5)

For n = 0: The concurrent rule pc for the single rule p0 is p0 itself. If p0 has a
set of NACs it will be preserved.

4 The complete grammar definition can be found together with Verigraph source code.

138 Calculation and Applications of Concurrent Rules

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



For n > 1: A concurrent rule pc = p′c ∗E pn with NACs for the rule sequence
p0, . . . , pn−1, pn is defined as pc = (lc ◦ kc : K → L, rn ◦ kn : K → R) where:
– p′c : L′c ← K ′c → R′c is a concurrent rule for the sequence p0, . . . , pn−1
– E is an overlapping of R′c and Ln with (e′c, en) jointly surjective
– (1)-(3) and (2)-(4) are valid double-pushout rewritings
– (5) is a pullback
– All the NACs Ni of the production p′c are shifted over the morphism l′,

resulting in a set of NACs n′i : L→ N ′i
– All the NACs Nj of the production pn are shifted over the morphism e2

and then over the span q′c = lc : Cc → L, rc : Cc → E, resulting in a set
of NACs n′j : L→ N ′j

5

4.1 Example: Concurrent Rules for sendMessage + getData

Given the rule sequence: sendMessage + getData from the rules depicted in
Fig 1, we want to generate the concurrent rules that summarize the behaviour
of this sequence in one step.

First, we generate all possible jointly surjective pairs (overlappings) between
the rhs of sendMessage and the lhs of getData. All possible combinations are
shown in Fig 2.

Fig. 2. Overlappings for sendMessage and getData.

After that, we check which overlappings satisfy the gluing conditions of
sendMessage−1 and getData. In this particular case they all do, so each one of
them will generate a different concurrent rule.

For each overlapping pair that satisfies those gluing conditions, we proceed to
the calculation of the pushouts and pullbacks that will result in the concurrent
rule. Fig 3 presents the diagram for calculating the concurrent rule correspondent
to the last overlapping6 depicted in Fig 2. Note that it is a concrete instance of
the diagram presented before.

The concurrent rule in our example is defined by the bottom of the diagram
in Fig 3, and it represents the act of sending a message and getting a piece of

5 Both the algorithms for shifting NACs over a morphism and over a span are omitted
here due to lack of space, but can be found in [4].

6 Due to space limitations we do not show the concurrent rules for every pair.

J. Bezerra, L. Ribeiro 139

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



data when there is only one element of each type present in the system state.
The other overlappings show other possible situations, some of them concurrent,
that could occur when the rules are not necessarily applied to the same elements.

Fig. 3. One possible concurrent rule for sendMessage and getData.

Verigraph allows for the calculation of all possible concurrent rules. Nonethe-
less, this is an expensive operation, since there exists a concurrent rule for each
different overlapping between a R′c and a Ln in each step of the induction, which
may result in a combinatorial explosion. For example, if we were to compute all
the concurrent rules for the sequence sendMessage+getData+receiveMessage,
we would have to calculate all possible overlappings for the rhs of each rule al-
ready calculated for sendMessage+ getData with the lhs of receiveMessage.

Also, the shifting of NACs adds considerably to this cost. In next section, we
present the strategies used which are being used in verigraph in order to reduce
this costs.

5 Dealing with the combinatorial explosion

There exist some strategies that can help dealing with the combinatorial explo-
sion of by addressing some specificities of the problem domain. The strategies
explained in the following do not solve the theoretical worst cases, but they have
been showed to be good enough in most of our practical cases.

5.1 Trivially-triggered NACs

For each pair of rules (pc, pn) for which we want to generate the corresponding
concurrent rules, we must first generate all possible overlappings between Rc and
Ln, check whether they satisfy the gluing conditions and calculate the pushouts
and pullbacks that will result in the concurrent rules. However, it is possible

140 Calculation and Applications of Concurrent Rules

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



that some of the generated overlappings result in epimorphic pairs (E, e1 : Rc →
E, e2 : Ln → E) whose morphisms e1 or e2 do not satisfy the right NACs of pc
or the left NACs of pn, respectively.

In such cases, the NACs forbid the existence of valid transformations

L
pc,l

′
==⇒ E and E

pn,r
′

===⇒ R even though the gluing conditions are satisfied. It
means that the rules could not be applied over the graph E. We may them
ignore such overlappings when calculating possible concurrent rules.

If we do maintain those pairs for computation, as the shift of NACs aims to
translate the NACs of each rule to sets of equivalent NACs in the concurrent
rules, we would generate rules where for every possible match of L, there will
always be a NAC not satisfied by m, thus the rule would never be applicable.

5.2 Graph Constraints

Graph constraints can be used to globally enforce or prohibit the existence of
certain structures in the graphs that can be generated by a graph grammar.
For example, they can be used to define minimal and maximal multiplicities for
nodes and edges.

When calculating the concurrent rules for a pair (pc, pn) we first use them
similarly to the use of NACs, checking whether the generated overlappings sat-
isfy the graph constraints, cutting off those who do not, which can also lead to
a reduction of possible concurrent rules. Fig 4 shows two negative atomic con-
straints that (a) forbid the existence of more than one server and (b) forbid a
piece of data of being in two different messages at the same time. Look at Fig 2
again to see that two of the overlappings would be cut off by these constraints.

We can still use the graph constraints to cut off even more concurrent rule
candidates, because even though the overlappings satisfy the gluing conditions
and NACs, the resulting lhs and rhs may still not satisfy the graph constraints.

When dealing with injective morphisms, if a graph L of a rule does not satisfy
the graph constraints, no possible m : L→ G can be found in which G satisfies
the constraints, thus the rule can never be applied and we can discard it. Similar
reasoning can be applied to the R graph and m′ : R→ H.

Fig. 4. Negative atomic constraints for server

5.3 Concurrent Rules Induced by Dependencies

The default algorithm constructs the concurrent rules based on all the overlap-
pings of the right side of the first rule and left side of the second rule, allowing

J. Bezerra, L. Ribeiro 141

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



us to see how the elements created/preserved by one rule can be connected with
the elements deleted/preserved by the other.

One way to restrict the number of possible concurrent rules and still gener-
ate meaningful rules is to filter and use only the overlappings associated with
dependencies [5] between subsequent pairs of rules. The idea behind this is to
use only the overlappings where (1) the elements needed for the second rule to
be applied are explicitly created by the first one or (2) the elements forbidden
by the NACs of the second rule are explicitly deleted by the first.

For the first case, we only need to filter the overlappings in the concurrent
rule diagram where @h12 : R′c → Cn such that (ln ◦h12 = e1 and rn ◦h12 |= N−1i )
or @h21 : Ln → Cc such that (rc ◦ h21 = e2 and lc ◦ h21 |= Nj).

However, this notion does not take into consideration the elements whose
existence is forbidden by the NACs of the second rule and would then forbid its
application, but once deleted by the first rule the application of the second is
enabled.

We did not find on the literature a construction to capture those cases, how-
ever an adaptation of the concurrent rule algorithm can be made based on the
algorithm for calculating dependencies between the rules defined in [5]. Besides
the overlappings between (R′c, Ln) that represent dependencies, we generate also
the overlappings of the left side of the first rule L′c with the NACs Nj and check
whether the rewritings are possible, in which case the diagram for the corre-
sponding concurrent rule construction can be seen as follows:

Ni Nje2

��

L′c

ni

OO

e1

��

(1)

K ′c

��

oo //

(2)

R′c
m′

1

  

Ln
m2

~~

nj

OO

Kn

��

oo //

(3)

Rn

m′
2

��

(4)

E Cccloo cr // P1 Cnnloo nr // P2

K

kc

hh

kn

66

(5)

5.4 Maximal Concurrent Rule

Sometimes, instead of generating all possible overlappings or even all the de-
pendencies, the modeller is interested in seeing only the maximal interactions
between the elements of each rule in the sequence, thus we may filter the overlap-
pings with the least number of elements, capturing the cases where the elements
of each rule are as connected as possible. Note that the rule in Fig 3 is a maximal
concurrent rule.

5.5 Comparison

Here we present some of the results when calculating the concurrent rules with
and without the strategies presented. The grammars used are shipped together
with Verigraph source code.

142 Calculation and Applications of Concurrent Rules

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



On table 1 we show the results for the grammar in section 3, where we
calculated the concurrent rules for it complete execution, represented by the
rule sequence: sendMsg+ getData+ receiveMsg+ deleteMsg. The constraints
used were the ones presented in section 5.2.

Strategy Time Number of Rules Number of NACs

None 1m30s 1021 rules ≈ 4 nacs/rule
Constraints on Overlappings 8s 141 rules ≈ 2 nacs/rule
Constraints on LHS and RHS 8s 141 rules ≈ 2 nacs/rule
Dependencies 0.45s 2 rules 2 nacs/rule
Maximal Rule 0.32s 1 rule 2 nacs/rule

Table 1. Concurrent rules for the server grammar

On table 2, we show the results for a grammar representing the behaviour of an
elevator system, where we calculated the concurrent rules that generate states
where there are four floors and the elevator has to attend a call request in one
of these floors. The corresponding rule sequence is: AddF loor + AddF loor +
InitialHigher + InitialHigher + InitialHigher + AddTransitiveHigher +
AddTransitiveHigher + AddTransitiveHigher + AddRequest. Fifteen graph
constraints where used to restrict invalid states such as: the elevator can not be
on two floors at the same time; two floors can not hold the same request; if floor
a is higher than b, then b is not higher than a, among other possibilities.

When calculating the concurrent rules for the elevator grammar without any
strategy, verigraph used all the memory available in the computer but even
after more than two days running it did not provide an answer, so we halted
the program. For the case of Maximal Rule, verigraph provided zero concurrent
rules because in some step of the computation the least disjoint overlapping(s)
did not satisfy some constraints, thus being discarded.

Strategy Time Number of Rules Number of NACs

None >2d NA NA
Constraints on Overlappings 30m 11313 rules ≈ 0.7 nacs/rule
Constraints on LHS and RHS 1m55s 287 rules ≈ 5 nacs/rule
Dependencies 2m15s 9 rules ≈ 4 nacs/rule
Maximal Rule 0.93s 0 rules 0 nacs/rule

Table 2. Concurrent rules for elevator grammar

6 Conclusions

We presented a statical analysis technique for Graph Grammars called concur-
rent rules, used to summarize the behaviours of several rules into a single step
in order to understand the overall behaviour a system.

We also presented some strategies that help to deal with the combinatorial
explosion inherent to this problem. The technique and strategies shown are being
implemented along with others in the Verigraph tool, under development at the
Instituto de Informática, Universidade Federal do Rio Grande do Sul.

Verigraph is already being used to support a methodology for systematically
checking Use Cases and other action-driven textual documents in order to iden-
tify and remove problems such as inconsistencies, omissions and ambiguities,

J. Bezerra, L. Ribeiro 143

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



as described in [6,1]. In this setting, the analysis of concurrent rules is used to
check whether the global aims of the documents are fulfilled as well as identify
unexpected side effects.

It is important to recall that these strategies do not solve the combinatorial
explosion problem at all, they only allow us to cut off rules that are not inter-
esting to the modeller or that violate an assumption of the grammar as soon as
possible, before they start to propagate.

This is part of a larger ongoing project, where we are investigating not only
how to verify the behaviour of textual documents and systems modelled as Graph
Grammars, but also how to use these models to generate software tests to cover
the system, avoiding test redundancy and, as much as possible, the combinatorial
explosion.

Acknowledgements

The authors would like to acknowledge the brazilian agencies CNPq, CAPES and
FAPERGS for their support in the form of financial aid (VeriTes project/CNPq)
and scholarships (CNPq).

References

1. Jonas Santos Bezerra, Andrei Costa, and Leila Ribeiro. Formal Verification of
Health Assessment Tools : a Case Study. Electronic Notes in Theoretical Computer
Science, 324(WEIT 2015, the Third Workshop-School on Theoretical Computer
Science):31–50, 2016.

2. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

3. H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic approach.
In Switching and Automata Theory, 1973. SWAT ’08. IEEE Conference Record of
14th Annual Symposium on, pages 167–180, Oct 1973.

4. Leen Lambers. Certifying rule-based models using graph transformation. PhD thesis,
Berlin Institute of Technology, 2009.

5. Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Conflict Detection for Graph
Transformation with Negative Application Conditions. In Andrea Corradini, Hart-
mut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz Rozenberg, editors, Graph
Transformations: Third International Conference, ICGT 2006 Natal, Rio Grande
do Norte, Brazil, September 17-23, 2006 Proceedings, volume 4178 of Lecture Notes
in Computer Science, pages 61–76, Berlin, Heidelberg, 2006. Springer Berlin Hei-
delberg.

6. Marcos Oliveira, Leila Ribeiro, Érika Cota, Lucio Mauro Duarte, Ingrid Nunes, and
Filipe Reis. Use Case Analysis Based on Formal Methods: An Empirical Study,
pages 110–130. Springer International Publishing, Cham, 2015.

7. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation: Volume I. Foundations. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 1997.

144 Calculation and Applications of Concurrent Rules

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The Smix synchronous multimedia language:
Operational semantics and coroutine implementation

Guilherme F. Lima1, Christiano Braga2, and Edward Hermann Haeusler1

1 PUC-Rio, Rio de Janeiro, Brazil
{glima,hermann}@inf.puc-rio.br

2 UFF, Niterói, Brazil
cbraga@ic.uff.br

Abstract. Smix is a domain-specific language for the construction of interactive
multimedia presentations. Its programs describe how media objects (texts, images,
videos, etc.) should be presented and how external events, such as the passage
of time or user interaction, affect their presentation. What distinguishes Smix
from similar high-level multimedia languages, such as NCL, SMIL, and HTML,
is first is simplicity: the language has only three main concepts (media object,
action, and link) which can nonetheless be used to program complex multimedia
applications. The second distinguishing characteristic of Smix is its synchronous,
deterministic semantics, which induces a precise notion of logical time. In this
paper, we introduce the Smix language, present two versions of its synchronous
semantics, equational and linear, both in big-step operational style, and discuss a
novel, straightforward implementation of its linear semantics using Lua coroutines.

1 Introduction

Smix [10] (Synchronous Mixer) is a domain-specific language for the construction of
interactive multimedia presentations. Its programs use synchrony relations (links) to
describe how media objects (texts, images, videos, etc.) should be presented and how
external events, such as the passage of time or user interaction, affect their presentation.

There are two characteristics that distinguishes Smix from similar high level multi-
media languages, such as NCL, SMIL, and HTML.3 The first one is simplicity. Smix has
only three main concepts, namely, media, action, and link, which can nonetheless be used
to program complex multimedia applications. A simpler language implies in a simpler
semantics and, consequently, a simpler implementation. NCL, SMIL, and HTML, in
contrast, are huge languages with numerous concepts and constructions to represent
them. Despite its simplicity, most NCL concepts can be easily simulated in Smix, as
discussed in [10]; in fact, the Smix language was deliberately designed to serve as an
abstraction layer (the language of a multimedia virtual machine) for the implementation
of other higher-level multimedia languages, in particular, Plain Smix (a syntactically
richer dialect of Smix), NCL, and to a lesser extend, SMIL.

3 NCL is the standard declarative language for interactive applications in the Brazilian digital
terrestrial television system [1] and an ITU-T recommendation for IPTV applications [8]. SMIL
is a widely adopted W3C recommendation [16] for interactive multimedia presentations. And
HTML is a W3C recommendation [17] (and core Web technology) for typesetting hyperlinked
text together with images, and more recently, audio and video.

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The second distinguishing characteristic of Smix is its deterministic, synchronous
semantics, which gives its programs a precise notion of logical time. The semantics of
NCL, SMIL and HTML, in contrast, is notoriously complex and obscure, especially in
relation to time [10]. Even on a logical level, these languages treat time as something
external to the system. Its representation and manipulation can be influenced by physical
phenomena, such as processing or communication delays, which are unpredictable or im-
plementation dependent, and which can thus lead to nondeterminism and dyssynchrony.
Smix, on the other hand, is a synchronous language with a semantics that guarantees
determinism and logical correctness. By calling it synchronous, we mean that its pro-
grams operate under the synchronous hypothesis [5], i.e., that they can be viewed as
input-driven systems whose reactions are instantaneous. The synchronous hypothesis
induces a precise notion of logical time in which the only relevant concepts are those of
simultaneity and precedence between events.

In [15] the authors propose a rewriting-logic semantics for NCL, and in [14] the
author proposes an authoring language-independent model for multimedia documents.
There are other proposals of formal semantics for NCL [12] and similar proposals for
SMIL [4]. Most of these works, however, are concerned not with the implementation
of interpreters (which is the main goal of Smix) but with static validation of program
properties, usually within a larger system of user-guided verification. Their models tend
to be complex and impractical, especially if real-time performance is needed.

In this paper, we focus on primarily the formalization of the synchronous semantics
of Smix, and present two versions of it: the equational semantics and the linear semantics.
Both versions follow the operational approach to semantics [13]; the particular style
used is that of big-step (or natural) operational semantics [9]. Both formalizations were
inspired by the formal semantics of the synchronous language Esterel [3,2], and as such
are only concerned with the description of a single program reaction.

The rest of the paper is organized as follows. In Section 2, we introduce the Smix
language and discuss the intuitive behavior of its programs. In Section 3, we present
the equational semantics, which formalizes this intuitive behavior. The problem with
the equational semantics is that it does not guarantee termination in bounded time,
which violates the synchronous hypothesis. In Section 4, we present the linear semantics
that solves this problem by adopting a linear format for programs, which replaces the
equational format, and in which reactions always execute in bounded time. In practice,
before executing a program, the Smix interpreter “linearizes” it, i.e., converts it from the
equational to the linear format. In Section 5, we present a simple implementation of the
linear semantics in a Lua [7] multimedia library augmented with coroutines (Section 5).
Finally, in Section 6 we draw our conclusions and point out future work.

2 The Smix language

Smix is a high-level declarative language for the construction of multimedia presentations.
Its goal is to offer simple but expressive abstractions for the precise representation of
complex audiovisual ideas. A Smix program is a set of media object declarations together
with a sequence of links. A media object is a presentation atom (e.g., image, audio, video,
etc.) and has associated with it an identifier, a content, a state, a time, and a property table.

146 The Smix synchronous multimedia language: Operational semantics and coroutine implementation

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The identifier uniquely identifies object in the program. The content is a possibly empty
sequence of audiovisual samples. The state is either “occurring” (playing), “paused”,
or “stopped”. The time is the number of clock ticks to which the object was exposed
while in state occurring. And the property table maintains the object properties—their
value determine the characteristics of the object’s presentation, e.g., the value of property
“transparency” determines the transparency applied to its visual samples.

In Smix, media objects are manipulated by actions. There are five possible actions:
start ( ), stop ( ), pause ( ), seek ( ), and attribution ( ). The first three actions, start, stop,
and pause, manipulate the object’s state; the last two, seek and set, manipulate the object’s
time and property table. Actions have the general form (predicate ? target : argument),
where the predicate is a propositional logic formula involving the state, time, or property
values of media objects, the target specifies the operation ( , , , , or ) and main
operand (media object or property) of the action, and the argument is an extra operand
(expression) required by seek and set actions.

The execution of an action is conditioned by the validity of its predicate. To evaluate
an action, the interpreter (more precisely, the language kernel) first evaluates its predicate.
If it is false, the action is discarded; otherwise, if it is true, the kernel proceeds to execute
the action: it evaluates the extra argument (if any) and tries to execute the specified
operation with the given operands. When writing actions, we often omit the predicate,
question mark, and parentheses when the predicate is tautological (always true). Thus (i)
an action of the form x, read “start x”, when executed, puts x in state occurring; (ii) an
action of the form x, read “pause x”, puts x in state paused; (iii) an action of the form x,
read “stop x”, puts x in state stopped; (iv) an action of the form x : e, read “seek x
by e”, advances the playback time of x by the number to which expression e evaluates;
and (v) an action of the form x.u : e, read “set x.u to e”, stores into property u of x the
value to which expression e evaluates.

A Smix program consists of two parts: a set of media object declarations and a
sequence of links. A media object declaration associates an object identifier with a
property initialization table. A link is a synchrony relation of the form a→ a1a2 . . . an,
which establishes that whenever some action with target a is executed, actions a1, a2, . . . ,
an shall also be executed, in this order. The action target a on the left-hand side of
symbol → is called the head of the link, and the action sequence a1a2 . . . an on its
right-hand side is called the tail of the link.

Example. To make matters concrete, consider the following Smix program:

λ→ x

x→ y z

y→ z

x→ λ

This program has four links which operate on four media objects: the ordinary objects x,
y, and z, and the implicit object lambda (λ) which stands for the program itself. The
first link establishes that when the program starts, media object x shall be started; the
second link establishes that whenever x starts, object y shall be started and object z shall
be stopped; the third link establishes that whenever y starts, object z shall be started; and
the fourth link establishes that when x stops the whole program shall be stopped.

G. Lima, C. Braga, E. Haeusler 147

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



The equational and linear semantics discussed in Sections 3 and 4 and are only
concerned with the description of a single program reaction (input-output cycle). Given
some input action a received from the environment, they determine how the execution
of action a affects the kernel memory (state, time and properties of media objects) and
the actions a1, a2, . . . , an that are to be triggered internally in response to a, and emitted
back to the environment at the end of the reaction.

3 The equational semantics

Smix has the following syntactic sets: integers n ∈ N; truth values t ∈ T = {>,⊥}; media
object identifiers x, y, z ∈ Media; property identifiers u, v ∈ Prop; expressions e ∈ Expr;
predicates p ∈ Pred; action atoms a ∈ ActAtom; action sequences α ∈ ActSeq; and link
sequences (or programs) L, P ∈ LinkSeq. Its abstract syntax is defined as follows:

e ∈ ExprF n | state(x) | time(x) | prop(x, u) | e1 + e2 | e1 − e2 | e1 × e2 | e1 ÷ e2

p ∈ PredF > | ⊥ | e1 = e2 | e1 < e2 | e1 > e2 | ¬p1 | p1 ∨ p2 | p1 ∧ p2

a ∈ ActAtomF (p ? x) | (p ? x) | (p ? x) | (p ? x:e) | (p ? x.u:e)
α ∈ ActSeqF ε | aα1

L ∈ LinkSeqF ε | x→ αL1 | x→ αL1 | x→ αL1 | x→ αL1 | x.u→ αL1

The program state is represented by a media memory, i.e., a total function θ that
maps a media object identifier x to a memory cell 〈s, n, ρ〉, where s ∈ { , , } is the
object state, n ∈ N is its time, and ρ : Prop → N is a total function that represents its
property table. We writeM for the set of all media memories, φ for the empty memory
cell 〈 , 0, ρ0〉, where ρ0 is the table in which all properties have value 0, and Φ for the
empty memory, i.e., the one in which all cells are empty.

Memory cells can be read and written. Given a memory θ and a media object x, we
write θ(x) for the cell of x in θ and θ[x B X] for the memory obtained by replacing θ(x)
by X. We write θs(x), θt(x), θρ(x, u) for the state, time, and value of property u of x
in θ, and θs[x B s] for the memory obtained by replacing θs(x) by s, θt[x += n] for the
memory obtained by incrementing θt(x) by n, and θρ[x.u B n] for the memory obtained
by replacing θρ(x, u) by n.

Finally, to access the links of a program, we define the link function ` that receives
as arguments the program P and an action atom a, and returns the action sequence α
associated with the execution of a in P (τ(a) denotes the target of action a):

`(ε, a) = ε

`(a′ → αL, a) =


α`(L, a) if τ(a) = a′

`(L, a) otherwise .

Evaluation of equational programs. The evaluation of action sequences is determined
by the relation ⇒ such that 〈α, P, θ〉 ⇒ θ′ iff action sequence α when executed over
program P in memory θ evaluates to the updated memory θ′. Since program P remains
fixed throughout the evaluation, we use the notation 〈α, θ〉 ⇒ θ′, with references to an

148 The Smix synchronous multimedia language: Operational semantics and coroutine implementation

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



implicit program P made when necessary. The relation⇒ is defined inductively in terms
of the link function and the relations for evaluation of expressions and predicates (whose
definition we deliberately omit) by the following eleven rules.

〈ε, θ〉 ⇒ θ (Rε)

〈state(x) , ∧ p, θ〉 ⇒ > 〈`(P, x)α, θs[x B ]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) = ∧ p, θ〉 ⇒ > 〈`(P, x)α, θs[x B ]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) = ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈`(P, x)α, θ[x B φ]〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x)α, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈`(P, x)α, θt[x += n]〉 ⇒ θ′

〈(p ? x:e)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x:e)α, θ〉 ⇒ θ′
(R−)

〈state(x) , ∧ p, θ〉 ⇒ > 〈e, θ〉 ⇒ n 〈`(P, x.u)α, θρ[x.u B n]〉 ⇒ θ′

〈(p ? x.u:e)α, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α, θ〉 ⇒ θ′

〈(p ? x.u:e)α, θ〉 ⇒ θ′
(R−)

By rule Rε the empty sequence ε does nothing and leaves the memory unchanged.
By rule R+, if the first action of the sequence is (p ? x) and if it can be executed in

state θ, i.e., if object x is in state paused or stopped and predicate p evaluates to true in θ,
the configuration evaluates to the result of evaluating sequence `(P, x)α in θs[x B ];
otherwise, by rule R−, the configuration evaluates to the result of evaluating α in θ.

Rules R+, R−, and R− operate similarly. If the first action of the sequence can be
executed, x transitions to the corresponding state and the links that depend on the action
target are triggered; otherwise, the action is dropped and the next action of the sequence
is considered. Rule R+ is also similar, but besides transitioning x to state stopped, it
replaces the cell of x in θ by the empty cell φ, which resets x’s state, time, and properties.

By rule R+, if the first action of the sequence is (p ? x:e) and if it can be executed
in θ, x’s playback time is incremented by the number to which expression e evaluates
in θ, and the links of program P that depend on target x are triggered; otherwise, by
rule R−, action (p ? x:e) is dropped and the next action of the sequence is considered.
By definition of memory writes, the playback time of x is reset to 0 if θt(x) + n < 0; thus
the resulting playback time is always a nonnegative integer.

By rule R+, if the first action of the sequence is (p ? x.u:e) and if it can be executed,
property u of x is set to the number to which expression e evaluates in θ, and the
links of program P that depend on target x.u are triggered; otherwise, by rule R−,
action (p ? x.u:e) is dropped and the next action of the sequence is considered.

G. Lima, C. Braga, E. Haeusler 149

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Determinism and non-termination. Theorem 1 establishes that the evaluation of
action sequences is deterministic. The proof follows by induction on the structure of
derivations.

Theorem 1 (Determinism). For all α ∈ ActSeq, θ, θ1, θ2 ∈ M, if 〈α, θ〉 ⇒ θ1
and 〈α, θ〉 ⇒ θ2 then θ1 = θ2.

Theorem 2 establishes that the evaluation of action x in the empty memory Φ
with P = x → x x does not converge. The proof follows by contradiction on the
assumption of minimality of a hypothetical derivation of 〈(> ? x), P, Φ〉 ⇒ θ.

Theorem 2. Let P = x → (> ? x)(> ? x). Then there is no θ ∈ M such that
〈(> ? x), P, Φ〉 ⇒ θ.

The above theorem implies that, under the equational semantics, the computation of
reactions may not terminate in a finite number of steps, which violates the synchronous
hypothesis. Similar problems occur in related languages, e.g., the problem of cyclic
dependencies in SMIL’s timegraph [16] (the structure used by the SMIL interpreter to
control the presentation), or that of causality cycles in Esterel [2]. Here the problem is
caused by infinite feedback loops in link evaluation: a link (or group of links) triggers
its reevaluation endlessly. A common approach to tackle such tight loops is to impose
a restriction that breaks them. For example, we could establish an upper bound to
the number of times the same link or action can execute during a reaction. Though
such restrictions are reasonable, we follow a more flexible path. Instead of adopting a
particular a priori restriction, we introduce a linear format for programs in which links
and action sequences are replaced by equivalent linear programs that always terminate.

4 The linear semantics

The abstract syntax of linear programs is mostly identical to that of equational programs
presented in Section 3. The only difference is the substitution of sets ActSeq and LinkSeq
by the set ActLine of linear programs defined as follows:

α ∈ ActLineF ε | a[α1]α2

Here metavariable α is assumed to range over ActLine. Though the same metavariable
is used to denote action sequences (members of ActSeq), care is taken not to mix the
uses so that the correct denotation can always be inferred from the context.

The linearization procedure σ we adopt takes as input an equational program P and
an action a and outputs a linear program α that represents the evaluation of a in P. The
procedure σ is defined in terms of the graph of program P, which is built by interpreting
its links as an adjacency list. For instance, Figure 1 depicts a Smix program and its
corresponding graph. A loop in the graph indicates the possibility of a tight loop during
reaction evaluation, but it does not guarantee that it will occur—its occurrence depends
on the contents of the evaluation stack and media memory, both of which cannot be
known statically.

150 The Smix synchronous multimedia language: Operational semantics and coroutine implementation

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



x y

xy

0, (> ? y)

1, (> ? x)

2, (> ? y)

3, (> ? x)

x→ y

y→ x

x→ y

y→ x

Fig. 1. A Smix program and its corresponding graph.

Given some program P and action a, procedure σ starts at the node representing the
target of action a and proceeds in depth-first fashion traversing (marking) each reachable
arc at most once. Its result is the linear program that implements the execution a in P.
The procedure’s running time is bounded to the number of arcs reachable from its point
of departure; its time complexity is thus O(n) where n is size of program P.

By applying σ to the program of Figure 1 with an input action (> ? x), we get
the linear program x[ y[ x[ y]]]. This program encodes the dependencies between
actions on the original equational program. To evaluate it, the kernel reads its leftmost
action, x, and tries to execute it. If it succeeds, in this case, if x can transition to state
occurring in θ, it proceeds to evaluate the subprogram that depends on x, namely, the
subprogram immediately following it in square brackets, y[ x[ y]]. Otherwise, it skips
the brackets altogether and proceeds to evaluate the next subprogram, ε in this case. The
kernel continues until there are no actions left to be executed.

Evaluation of linear programs. The evaluation of linear programs is given by the
relation ⇒ such that 〈α, θ〉 ⇒ θ′ iff linear program α when executed in memory θ
evaluates to an updated memory θ′. Relation⇒ is defined inductively in terms of the
relations for evaluation of expressions and predicates by the following rules. (Here we
show only the rules for the evaluation of programs whose first action is a start action;
the rules for the remaining actions and for the empty program are similar—they are
analogous to their counterparts in the equational semantics.)

〈state(x) , ∧ p, θ〉 ⇒ > 〈α1α2, θs[x B ]〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R+)

〈state(x) , ∧ p, θ〉 ⇒ ⊥ 〈α2, θ〉 ⇒ θ′

〈(p ? x)[α1]α2, θ〉 ⇒ θ′
(R−)

Determinism and termination. Theorem 3 establishes that the evaluation of linear
programs is deterministic. The proof follows by induction on the structure of derivations.

Theorem 3 (Determinism). For all α ∈ ActLine, θ, θ1, θ2 ∈ M, if 〈α, θ〉 ⇒ θ1
and 〈α, θ〉 ⇒ θ2 then θ1 = θ2.

Theorem 4 establishes that the evaluation of linear programs always terminates. Its
proof follows by induction on the structure of programs and depends on a lemma that
establishes that 〈α1α2, θ〉 ⇒ θ′′ iff 〈α1, θ〉 ⇒ θ′ and 〈α2, θ

′〉 ⇒ θ′′, for some θ′.

Theorem 4 (Termination). For all α ∈ ActLine and θ ∈ M, there is a θ′ ∈ M such
that 〈α, θ〉 ⇒ θ′.

G. Lima, C. Braga, E. Haeusler 151

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



A consequence of Theorem 4 is the Turing-incompleteness of the computational
model of linear Smix programs. One requirement for Turing-completeness is the ability
to express indefinite iteration, but Theorem 4 restricts this ability, so the resulting model
is not Turing-complete. This means that there are computable functions which cannot be
expressed by linear Smix programs. That said, Smix’s model is intentionally restricted:
it aims to ease the description of interactive multimedia presentations, as opposed to
the description of general algorithms. Moreover, if general computing functions are
required, one can resort to external scripts, which can be embedded in the program as
media objects containing Lua code.

Finally, note that the evaluation relation for linear programs determines a natural
equivalence relation on ActLine: programs α1 and α2 are equivalent, in symbols α1 ∼ α2,
iff they evaluate to the same final memory θ′ when fed with the same initial memory θ.
This definition of equivalence gives rise to program reduction techniques which can be
used to optimize programs. Equivalence results and the detailed proofs of the previous
theorems can be found in [10].

5 Coroutine interpretation

The original implementation of Smix [10] has two parts: the language kernel, which
is simply a realization of the linear semantics, and the multimedia engine, which take
kernel’s commands and renders the corresponding multimedia presentation. These parts
are kept in isolated modules that communicate asynchronously by exchanging messages
(actions). Though this design works reasonably well, an even simpler implementation is
possible: we can convert (or interpret) the Smix program into a Lua script that uses the
multimedia engine’s synchronous API plus Lua coroutines to realize the program logic.
We now describe this alternative implementation in detail.

Smix’s multimedia engine code consists of a single C library, called LibPlay4, which
is built on top of GStreamer [6], a free/open-source framework for multimedia. The
Lua binding of LibPlay is called LuaPlay, and has two main concepts: scene and media.
A scene represents an OS-level window with audio and video output. And a media
represents a media object, which is analogous to a Smix media object. The scene API
consists of the following functions: (i) new, which creates it, (ii) get and set which
manipulate its properties, (iii) receive which blocks awaiting for a given event, and
(iv) quit which quits the scene. Similarly, the media API consists of the functions (i) new
which creates a media in a given scene, (ii) get and set which manipulates the media
properties, and (iii) start, pause, stop and seek which manipulates the media state and
playback time.

The scene and media APIs we are considering here are synchronous: all its calls
are immediately effectuated and, with exception of scene’s receive call, execute in no
(logical) time. The only call that actually “consumes” time is receive; in fact, it is only
during this call that the engine produces audiovisual samples, and it does this until an
event that matches the mask passed to receive is generated. Currently, LuaPlay API
supports three types of events: clock ticks, user interactions (keyboard and mouse) and
media object state changes.

4 https://github.com/TeleMidia/LibPlay

152 The Smix synchronous multimedia language: Operational semantics and coroutine implementation

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Using the previous API, we can easily construct simple applications that wait for
a single event before doing something. But as soon as we need to wait for more than
one event things get complicated. There are basically two approaches to deal with the
problem of awaiting on multiple events (conditions). The traditional solution is to use
callbacks—we could call receive in a loop, passing each received event to the registered
callbacks. The problem with this solution is that the program logic is “lost” in the
callbacks. The alternative solution, and the one we adopt here, is to implement a parallel
operation that creates new program trails dynamically. Under this approach, to wait for
two events we simply create two trails and block them on the corresponding events.

In LuaPlay, this parallel operator is the scene function par: it creates a trail for each
function received as argument and terminates the parallel composition as soon as one of
them ends. In practice, we use Lua coroutines to implement the parallel composition. The
par call creates a coroutine to represent the parallel composition of the given functions.
It wraps each function into a coroutine itself and then execute these child coroutines,
one at a time. If all of them yield awaiting on some condition, the composition itself
yields awaiting on the combined condition. Otherwise, if one of them terminates, the
composition terminates, which causes the termination of its child trails. (If par calls are
nested, only the topmost call calls the real “await”, i.e., the scene’s receive function.)

Using LuaPlay’s parallel operator par and an await operator, which is simply the
coroutine yield call, we can easily implement Smix programs: the program itself is a
single par call and each of its links is a trail that waits in a loop for the link condition (its
head) and executes the corresponding linear program whenever it is awaken. Figure 2
presents the LuaPlay program that implements the example Smix program discussed
at the end of Section 2. Finally, note that using this technique we can either compile
Smix programs into LuaPlay programs or interpret them directly, i.e., we can write an
eval function which takes a Smix program, builds and returns a function that is the
corresponding LuaPlay program (the main trail of the par call).

1 scene:par {
2 function ()
3 while true do
4 await {type=’start’, media=λ}
5 exec (σ(P, λ))
6 end end,
7 function ()
8 while true do
9 await {type=’start’, media=x}

10 exec (σ(P, x))
11 end end,

12 function ()
13 while true do
14 await {type=’start’, media=y}
15 exec (σ(P, y))
16 end end,
17 function ()
18 while true do
19 await {type=’stop’, media=x}
20 exec (σ(P, x))
21 end end
22 }

Fig. 2. Coroutine version of the example Smix program discussed at the end of Section 2.

6 Conclusion

In this paper, we presented the Smix language, discussed two versions its synchronous
semantics, equational and linear, and proposed a novel, straightforward implementation
of its linear semantics using Lua coroutines. Though we discussed most Smix features,
some of them (pinned actions, limited iteration, and asynchronous actions) were de-
liberately omitted. These omissions, however, do not affect the formalisms and results
discussed in Sections 3 and 4, nor the coroutine implementation discussed in Section 5.

G. Lima, C. Braga, E. Haeusler 153

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



We are currently investigating a continuation semantics for the coroutine interpreta-
tion of Smix programs discussed in Section 5. Our goal, in this case, is not only to relate
both semantics (Smix and continuations) but also to use the continuation semantics as
a basis for developing an imperative (Esterel-like) synchronous multimedia language
(whose engine is LuaPlay). Besides the continuation semantics, we are also investigating
approaches for verifying the behavior of Smix programs “in time”, i.e., for reasoning
about a sequence of chained program reactions, each describing an instant. We intend
to use for this purpose Petri-PDL [11], an extension of dynamic propositional logic for
Petri nets, which would allow us to model the behavior of both the language kernel and
the multimedia engine, and to do so stochastically.

References

1. ABNT NBR 15606-2: Digital Terrestrial TV — Data Coding and Transmission Specification
for Digital Broadcasting — Part 2: Ginga-NCL for Fixed and Mobile Receivers: XML
Application Language for Application Coding. ABNT, São Paulo, SP, Brazil (2007)

2. Berry, G.: The constructive semantics of pure Esterel: Draft version 3. Tech. rep., INRIA,
Sophia-Antipolis, France (2002)

3. Berry, G., Gonthier, G.: The ESTEREL synchronous programming language: Design, seman-
tics, implementation. Science of Computer Programming 19(2) (1992)

4. Gaggi, O., Bossi, A.: Analysis and verification of SMIL documents. Multimedia Systems
17(6) (2011)

5. Gamatié, A.: Designing Embedded Systems with the SIGNAL Programming Language.
Springer New York, New York, NY, USA (2010)

6. GStreamer Developers: GStreamer: Open source multimedia framework. http://
gstreamer.freedesktop.org, accessed November 9, 2016

7. Ierusalimschy, R.: Programming in Lua. Lua.org, 3rd edn. (2013)
8. ITU-T Recommendation H.761: Nested Context Language (NCL) and Ginga-NCL. ITU

Telecommunication Standardization Sector, Geneva, Switzerland (November 2014)
9. Kahn, G.: Natural semantics. In: STACS 87: 4th Annual Symposium on Theoretical Aspects

of Computer Science, 1987 Proceedings, LNCS, vol. 247 (1987)
10. Lima, G.F.: A synchronous virtual machine for multimedia presentations. Ph.D. thesis, De-

partment of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil (2015)
11. Lopes, B.: Extending Propositional Dynamic Logic for Petri Nets. Ph.D. thesis, Department

of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil (2014)
12. Picinin, D., Farines, J.M., Koliver, C.: An approach to verify live NCL applications. In:

Proceedings of the 18th WebMedia, São Paulo, SP, Brazil, 15–18 October, 2012. ACM (2012)
13. Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. 19, Computer

Science Departement, Aarhus University, Aarhus, Denmark (1981)
14. dos Santos, J.: Multimedia Document Validation Along its Life Cycle. Ph.D. thesis, Computing

Institute, UFF, Niterói, RJ, Brazil (2016)
15. dos Santos, J., Braga, C., Muchaluat-Saade, D.C.: A rewriting logic semantics for NCL.

Science of Computer Programming 107–108 (2015)
16. W3C: Synchronized multimedia integration language (SMIL 3.0). Recommendation, World

Wide Web Consortium (December 2008)
17. W3C: HTML5: A vocabulary and associated APIs for HTML and XHTML. Recommendation,

World Wide Web Consortium (October 2014)

154 The Smix synchronous multimedia language: Operational semantics and coroutine implementation

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Interpretador e Verificador de Tipos para o
Cálculo-λ Quântico com Mônadas e Setas ⋆

José Carlos Puiati Pires1, Eduardo Kessler Piveta1 e Juliana Kaizer Vizzotto1

Universidade Federal de Santa Maria

Resumo Uma das características mais importantes da computação quân-
tica é a superposição de estados, que pode ser interpretada como não
determinismo (um efeito computacional). Uma forma de alcançar elegan-
temente a modelagem de efeitos computacionais em linguagens funcionais
é a partir da utilização de mônadas, e através de sua forma mais genérica,
as setas. Assim, o presente trabalho tem como proposta apresentar um
interpretador e um verificador de tipos para o cálculo-λ quântico com a
utilização de mônadas e setas.

Keywords: cálculo-λ, interpretador, computação quântica, mônadas, verificador
de tipos

1 Introdução

Dentre os modelos clássicos de computação, o cálculo-λ [3] é considerado a
linguagem de programação mais simples e universal. Até mesmo o conceito mais
fundamental de computabilidade pode ser definido em termos do cálculo-λ. Além
disso, a correspondência de Curry-Howard estabelece uma relação direta entre os
termos-λ tipados e provas na lógica construtivista. Investigar essa correspondência
para computação quântica tem sido uma motivação na área de linguagens de
programação quântica.

Nesse contexto, o cálculo-λ quântico monádico com setas [15] é uma extensão
do cálculo-λ simples com tipos, que tem como objetivo expressar programas
quânticos. Entretanto, ao invés de representar diretamente combinações lineares
de termos na linguagem, esse cálculo é baseado na meta-linguagem computacional
introduzida por [9]. Para representar os dois tipos de computações quânticas,
puras (reversíveis) e impuras (medida), utiliza-se uma construção natural chamada
de setas [5, 7].

O objetivo do trabalho é propor um interpretador para o cálculo-λ quântico
com a utilização de mônadas e setas, além de ser realizada a definição de um
verificador de tipos para o interpretador. Como principal contribuição, espera-
se ter uma linguagem de programação quântica de alto-nível executável para
modelagem de algoritmos quânticos e também um estudo de propriedades da
lógica quântica que fundamenta tal linguagem.
⋆ Trabalho financiado por uma bolsa CAPES e pelo projeto STICAmSud - CAPES

intitulado Foundations of Quantum Computation: Syntax and Semantics.

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



2 José Carlos Puiati Pires, Eduardo Kessler Piveta e Juliana Kaizer Vizzotto

2 Preliminares

2.1 Computação Quântica

A unidade básica de informação clássica computável é o bit, um sistema físico
clássico binário. Em computação quântica, a unidade básica de informação é
representada pelo bit quântico ou qubit, um sistema físico quântico binário. O
qubit é comumente representado como uma superposição de estados, através da
notação braket1 de Dirac [4]: |ψ⟩ = α|0⟩ + β|1⟩.

Os valores associados às bases α e β representam as amplitudes de probabi-
lidade relacionadas a cada base do qubit (|0⟩ e |1⟩). O qubit pode ser definido
como um vetor em um espaço vetorial complexo (espaço de Hilbert), tal que
|α|2 + |β|2 = 1.

Formalmente, a combinação de dois ou mais estados quânticos pode ser
obtida usando uma operação de produto tensorial (⊗). Se q = α|0⟩ + β|1⟩ e
p = γ|0⟩ + δ|1⟩ são dois qubits não relacionados. Ao aplicar o produto tensorial,
temos q ⊗ p = αγ|00⟩ + αδ|01⟩ + βγ|10⟩ + βδ|11⟩.

O processamento de informação quântica é realizado por operadores, que
possibilitam a evolução de um sistema quântico. Ele define que um sistema
quântico isolado no estado |ϕ⟩1 evolui para |ϕ⟩2 através da aplicação de uma
operação unitária |ϕ⟩2 = U|ϕ⟩1. As operações quânticas tem como característica
serem reversíveis, isto é, quando se conhece as operações que foram aplicadas ao
qubit, é possível retornar ao seu estado inicial.

Outro tipo de operação sobre os bits quânticos é a medição. Ela é uma operação
não reversível e pode ser explicada como uma visão clássica probabilística de um
vetor de estados quânticos. Dessa forma ao aplicar a medição da base 0 em um
sistema quântico da forma α|0⟩ + β|1⟩ obtemos |0⟩ com |α|2 de probabilidade
associada.

2.2 Mônadas

Com o intuito de otimizar, tornar elegante e flexibilizar a utilização de noções
de computação em informática, foram apresentadas as mônadas, abordagem
semântica para computações com base no modelo matemático de teoria das cate-
gorias [8]. Através da utilização das mônadas é possível encapsular as alterações
de estado dos dados (efeitos colaterais) sem afetar os demais.

Moggi [8] propõe para manipular mônadas, utilizar os elementos da tripla
Kleisli (M ,η,≫=):

i. M , construtor do tipo monádico;
ii. η, uma adaptação da função identidade id x = x, representada como return ::

a → Ma;
iii. ≫=, uma adaptação da composição de funções (f . g) x = f (g x), represen-

tada como ≫= :: Ma → (a → Mb) → Mb.
1 O nome braket surge através de uma convenção em que um vetor de coluna é chamado
“ket” e sua notação é demonstrada por | ⟩ e um vetor de linhas é chamado “bra” e
tem como notação ⟨ |.

156 Interpretador e Verificador de Tipos para o Cálculo-λ Quântico com Mônadas e Setas

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Title Suppressed Due to Excessive Length 3

2.3 Setas

As mônadas demonstram um grande poder computacional para várias operações,
porém em alguns casos elas não podem ser utilizadas. Mônadas não são aplicadas à
funções que recebem múltiplas entradas, especialmente quando algumas entradas
são estáticas e outras dinâmicas. Assim, como um modelo mais genérico de
mônadas, foram propostas as setas (arrows) [5].

A utilização de mônadas e setas é diferente para as representações de estado,
embora ambas trabalhem para sequencializar efeitos computacionais. As mônadas
servem mais para controle do fluxo global, como exceções. As setas são mais
indicados para modelar propriedades de transformações de fluxos, como estruturar
circuitos computacionais. [2]

As setas são um modelo mais genérico para sequencializar computações, e
podem ser vistas como uma generalização de mônadas [6].

3 Modelando Efeitos Quânticos com Mônadas

Bits quânticos, pela sua características de superposição de estados, podem ser
considerados como elementos com efeitos computacionais. Essas estruturas que
apresentam não determinismo podem ser modeladas com a utilização de mônadas
[10]. Assim, temos o não determinismo definido, através da tripla Kleisli (T ,η,≫=),
como TA = P(A), sendo P(A) o conjunto de valores possíveis para A.

Através da proposta monádica para tratar o não determinismo, podemos criar
estados quânticos e operações sobre eles [14]. Pelas bases do conjunto A e ≫=
temos o significado de linearidade. Podemos descrever o bit quântico como um
vetor no espaço bidimensional complexo. Considerando as bases A = {0, 1}, e
os números complexos C = {α, β}, temos |ψ⟩ = α|0⟩ + β|1⟩. Assim, a função
≫= deve fazer um mapeamento das possibilidades de ocorrência de cada base e
relacionar a sua amplitude de probabilidade, na forma P(A× C).

Com intuito de representar valores quânticos, foi proposta uma abordagem
de computação quântica utilizando mônadas, com seus valores de acordo com a
tripla Kleisli:

i. M , Vec a = a → PA como o construtor do tipo (Vec a), que mapeia uma
base a para uma amplitude de probabilidade P A;

ii. η, return :: a → Vec a, transforma o valor em um dado monádico;
iii. ≫=, bind :: Vec a → (a → Vec b) → Vec b, sequencializa uma computa-

ção de Vec a para Vec b

4 Cálculo-λ com Double Effect

Não apenas na forma de função as mônadas e setas podem ser úteis para
representar a computação quântica. Os efeitos colaterais podem ser representados
em termos do cálculo-λ. Várias ideias foram propostas nesse contexto [11,12], além
de também serem definidas regras de tipos para interpretação da computação
quântica [13].

J. Pires, E. Piveta, J. Vizzotto 157

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



4 José Carlos Puiati Pires, Eduardo Kessler Piveta e Juliana Kaizer Vizzotto

A partir desses estudos foram propostas variações do cálculo-λ quântico
para que possam trabalhar com a informação quântica utilizando mônadas
e setas [15], uma extensão do cálculo-λ simplesmente tipado para expressar
algoritmos quânticos.

Em computação quântica existem dois tipos de estado: (i) estados puros,
a esses é possível aplicar operações lineares e unitárias, bem como estabeler
processos de reversibilidade e (ii) estados impuros, resultantes de uma medição.
Para representar os dois tipos de estados quânticos podem ser utilizadas setas [5,7].

4.1 Cálculo-λ Quântico Monádico

Formalmente a extensão do cálculo-λ simplesmente tipado para o cálculo-λ
monádico necessita de duas operações, a primeira para transformar valores puros
em cálculos monádicos, [M ]M , e a segunda para compor uma sequência de efeitos,
letM , essas duas operações são análogas à return e bind [10].

Na Figura 1 podemos visualizar as regras de tipos para o calculo-λ quântico
bem como a terminologia utilizada para representar operadores quânticos. E na
Figura 2 é possível visualizar as regras de avaliação utilizadas neste cálculo [15].

Figura 1. Sintaxe e Regras de Tipo do Cálculo-λ Monádico

Sintaxe
Amplitudes de Probabilidade α, β ∈ C
Definição de Tipos Vec A = A → C
Tipos A, B, C ::= ... | Vec A
Termos L, M, N ::= ... | [M ]M | letM x = M in N | vzero | + | −

Tipo Monádico Tipo Let

Γ ⊢ M : A

Γ ⊢ [M ]M : Vec A

Γ ⊢ M : Vec A Γ, x : A ⊢ N : Vec B

Γ ⊢ letM x = M in N : Vec B

Tipo Mônada Plus Tipo Mônada Zero

Γ ⊢ M, N : Vec A

Γ ⊢ M + N : Vec A Γ ⊢ vzero : Vec A

Tipo Mônada Minus Tipo Produto Escalar

Γ ⊢ M, N : Vec A

Γ ⊢ M − N : Vec A

Γ ⊢ M : Vec A

Γ ⊢ α ∗ M : Vec A

158 Interpretador e Verificador de Tipos para o Cálculo-λ Quântico com Mônadas e Setas

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Title Suppressed Due to Excessive Length 5

Figura 2. Regras de Avaliação do Cálculo-λ Monádico

Regras para o LetM

(leftM ) letM x = [L]M in N = N [x := L]
(rightM ) letM x = L in [x] = L
(assocM ) letM y = (letM x = L in N) in T = letM x = L in (letM y = N in T )

Regras para a Mônada plus
(vzero+) vzero + a = a
(vzero+) a + vzero = a
(assoc+) a + (b + c) = (a + b) + c
(leftvzero

M ) letM x = vzero in T = vzero
(left+

M ) letM x = (M + N) in T = (letM x = M in T ) + (letM x = N in T )

A partir da definição do calculo-λ quântico é possível modelar todos estados
quânticos puros, além de realizar computações quânticas reversíveis, ou seja,
aplicar operações lineares.

Apesar de ser possível representar os estados puros, deseja-se também a
representação de estados quânticos impuros, i.e., estados obtidos após a medição.
Para utilizar a medição no cálculo pode ser utilizada a generalização de mônadas,
chamada setas [15].

4.2 Cálculo-λ Quântico com Setas
Apenas com operações reversíveis e estados puros não é possível apresentar
a medição. Entretanto, ao utilizar matrizes de densidade é possível modelar
formas mais generalizadas de estados quânticos, e representar ambos estados,
puros e mistos. Através de superoperadores é possível se obter uma generalização
de computações quânticas e representar operações lineares (reversíveis) e a
medida [14].

Com base no core do cálculo com setas [7] foi proposto um cálculo-λ quântico
utilizando-se de mônadas e setas. A sintaxe do cálculo é apresentada na Figura 3.

Ao cálculo-λ simplesmente tipado com mônadas, foram adicionadas novas
definições. Uma característica importante do cálculo com setas é que o domínio
para efeitos colaterais deve ter dois contextos diferentes: Γ para as variáveis
derivadas de abstrações-λ ordinárias e ∆ variáveis derivadas de abstrações de
setas [15].

5 Interpretador para o Cálculo Quântico com Mônadas e
Setas

O interpretador e verificador de tipos propostos vêm sendo desenvolvidos na
linguagem funcional Haskell. A partir do core do cálculo-λ simplesmente tipado,

J. Pires, E. Piveta, J. Vizzotto 159

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



6 José Carlos Puiati Pires, Eduardo Kessler Piveta e Juliana Kaizer Vizzotto

Figura 3. Cálculo-λ Quântico com Setas

Sintaxe

T ypedef Dens A = (A, A) → C
T ypedef Super A B = (A, A) → Dens B
T ypes A, B, C ::= . . . | Dens A | Super A B
T erms L, M, N ::= . . . | λ•x.Q
Commands P, Q, R ::= L • M | [M ]A | letA x = P in Q
Environments Γ, ∆ ::= x1 : A1, . . . , xn : An

Tipo Arrow

Γ ; x : A ⊢ Q ! Dens B

Γ ⊢ λ•x.Q : Super A B

Γ ⊢ L : Super A B Γ, ∆ ⊢ M : A

Γ ; ∆ ⊢ L • M ! Dens B

Γ, ∆ ⊢ M : A

Γ ; ∆ ⊢ [M ]A ! Dens A

Γ ; ∆ ⊢ P ! Dens A Γ ; ∆, x : A ⊢ Q ! Dens B

Γ ; ∆ ⊢ letA x = P in Q ! Dens B

Regras de Avaliação

(β⇝) (λ•x.Q) • M = Q[x := M ]
(η⇝) λ•x.(L • [x]A) = L
(left) letA x = [M ]A in Q = Q[x := M ]
(right) letA x = P in [x] = P
(assoc) letA y = (let x = P in Q) in R = letA x = P in (letA y = Q in R)

foram sendo acrescidos elementos que permitam o desenvolvimento de estruturas
capazes de representar dados e realizar operações quânticas.

A semântica operacional utilizada nesse cálculo foi apresentada nas seções
anteriores pela Figuras 2 e 3, assim como o sistema de tipos, através Figuras 1 e
3. A partir delas foi possível definir a sintaxe abstrata dos termos do cálculo-λ.

O interpretador está sendo desenvolvido com a notação nameless, que modifica
os termos do cálculo para termos sem nome. Esta notação tem como objetivo
de evitar, ao realizar a substituição, a captura de variáveis. Ela utiliza índices
(índices de Bruijn) em vez de variáveis, prevenindo de antemão a captura de
variáveis [1].

5.1 Cálculo-λ Quântico Monádico

Como visto na Seção 4.1, dados monádicos podem ser utilizados para representar
bits quânticos e operações reversíveis. Para que isso seja obtido, primeiramente
foram adicionados alguns elementos sintáticos, presentes na Figura 1. Definidos
pelo construtor de tipos data temos o tipo TLam que representa os termos
lambda do interpretador, assim adicionamos os termos monádicos:

160 Interpretador e Verificador de Tipos para o Cálculo-λ Quântico com Mônadas e Setas

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Title Suppressed Due to Excessive Length 7

data TLam = . . .
| TMon TLam
| TLetM Char TLam TLam
| TVZero
| TMPlus TLam TLam
| TMMinus TLam TLam
| TMScalar Double TLam

Ao definir a árvore de sintaxe abstrata para esses termos temos: em TMon a
representação um constrututor de uma mônada; com a proposta de sequencia-
lizar computações, o termo TLetM; o TVZero como um numeral monádico;
para representar a superposição dos bits quânticos foram construidos TPlus e
TMMinus; e por fim TMScalar, que associa um amplitude de probabilidade a
uma base (para o interpretador foi utilizado TTrue para |1⟩ e TFalse para |0⟩).

Através da sintaxe abstrata é possível representar os bits quânticos |1⟩ e |0⟩,
bem como a superposição entre eles |0⟩ + |1⟩:

|1⟩ = TMPlus (TMScalar 1.0 (TMon TTrue)) (TMScalar 0.0 (TMon TFalse))
|0⟩ = TMPlus (TMScalar 0.0 (TMon TTrue)) (TMScalar 1.0 (TMon TFalse))
|0⟩+|1⟩ = TMPlus (TMScalar (1/

√
2) (TMon TTrue)) (TMScalar (1/

√
2)

(TMon TFalse))

Ao verificador de tipos foi acrescido o tipo TypeVecA, que representa um
vetor de tipos sobre uma base computacional A. Primeiramente foi definido o
sinônimo de tipos TypeContext, como o contexto de tipos a ser verificado pela
função TypeOf (ambos vistos abaixo), que ao receber um contexto de tipos e
um termo, retorna o tipo desse termo.

type TypeContext = [ ( Char , Type ) ]

typeOf : : TypeContext −> TLam −> Type

Com a semântica operacional definida, foi construida a avaliação dos termos
sem nome através da chamada por valor (call by value), definida pela função
interpretNLam:

interpretNLam : : NLam −> NLam
interpretNLam t = l e t t ’ = evalCBVNL t

in i f t ’ == t then t ’
e l s e interpretNLam t ’

através dela é possível avalialiar recursivamente o termo sem nome. A função
evalCBVNL realiza um passo de avaliação, ela é acionada até que o termo
esteja na sua forma normal.

A partir do verificador de tipos e das regras de avaliação é possível sequencia-
lizar as duas operações através da função interpret

i n t e r p r e t : : TLam −> TLam
i n t e r p r e t t = i f ( isWellTyped ( typeOf contextType t ) )

then l e t t ’ = removeNames context t

J. Pires, E. Piveta, J. Vizzotto 161

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



8 José Carlos Puiati Pires, Eduardo Kessler Piveta e Juliana Kaizer Vizzotto

in restoreNames context ( interpretNLam t ’ )
e l s e e r r o r " Erro na va l idacao de t i p o s "

que possibilita a união das duas funções. Primeiramente é verificada a tipagem
do termo, no caso de ser bem tipado inicia o processo de avaliação. A função
removeNames realiza a renomeiação dos nomes em índices de Bruijn, então os
termos são avaliados pela função interpretNLam, e à forma normal desse termo
é aplicada a função restoreNames que faz o papel inverso ao removeNames,
ou seja, restaura os nomes aos termos.

Para exemplificar a utilização do interpretador, podemos utilizar a operação
de hadamard, uma operação unitária aplicada a um qubit que estabelece a
superposição de estados do qubit. Ela pode ser interpretada como uma abstração
que recebe um dado do tipo TypeBool e conforme o valor aplicado, retorna |1⟩
ou |0⟩, definidos anteriormente.

hadamard : : TLam
hadamard = Abs ’x ’ TypeBool ( TIf ( Var ’x ’ ) | 1 ⟩ |0 ⟩)

5.2 Cálculo-λ Quântico com Setas

Para serem efetuadas computações de double-effect (realizar operações sobre
estados quânticos puros e impuros) são necessários adicionar novos termos de
setas ao interpretador. Dessa forma foram adicionados os termos de setas:

data TLam = . . .
| TArrow TLam
| TAAbs Char Type TLam
| TAApp TLam TLam
| TALet Char TLam TLam
| TAPlus TLam TLam
| TAMinus TLam TLam

Ao definir a árvore de sintaxe abstrata para esses termos temos: TArrow como
o construtor de uma seta que representa uma matriz de densidade; assim podemos
definir funções que transformam matrizes de densidade em novas matrizes de
densidade, superoperadores, com a contrução da abstração para setas TAAbs; o
termo TAApp é utilizado para representar a aplicação de um superoperador em
uma matriz de densidade; TALet representa a composição de funções de setas,
bem como a composição monádica; para representar a superposição dos termos
de setas foram incluidos TAPlus e TAMinus.

A organização dos contextos foi modificada, tal que, para o cálculo com setas
são necessário dois contextos, foi incluído o novo contexto ∆ que armazena as
variáveis derivadas de abstrações de setas, dessa forma o contexto de tipos é
representado através de uma dupla de listas de tuplas, em que a primeira dupla
representa o contexto Γ e a segunda dupla o contexto ∆

type TypeContext = ( [ ( Char , Type ) ] , [ ( Char , Type ) ] ) .

162 Interpretador e Verificador de Tipos para o Cálculo-λ Quântico com Mônadas e Setas

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Title Suppressed Due to Excessive Length 9

Também foram incluídos novos tipos ao interpretador a partir das regras
da Figura 3: TypeComm Type para definição de um tipo comando de efeitos
colaterais que recebe um TypeDens; TypeDens Type representando uma
matriz de densidade e por fim TypeSuper Type Type que define um tipo de
um superoperador, que recebe um tipo e deriva para um novo tipo.

typeOf ctx (TALet x t 1 t2 ) =
l e t tyT1 = typeOf ctx t 1

tyT1 ’ = removeFromArrow ( tyT1 )
ctx ’ = addArrowType ctx x tyT1 ’
tyT2 = typeOf ctx ’ t2

in i f ( i sNotError tyT1 ’ )
then i f ( i sNotError tyT2 )

then i f ( isCommand tyT2 )
then tyT2
e l s e TypeErr "O segundo termo deve s e r
do t ipo Command"

e l s e tyT2 −−Retorna o e r ro
e l s e tyT1 ’ −−Retorna o e r ro

Por pattern matching (casamento de padrões), a função encontra o termo
a ser avaliado pela função TypeOf , no caso acima temos a verificação do tipo
para o termo TALet, a abstração de setas, que recebe uma variável (x) e dois
termos (t1 e t2). Primeiramente é removido o tipo de t1 e aciona a função
removeFromArrow que verifica se o primeiro termo é TypeComm e retira-o
de um tipo de setas, o termo com efeitos de setas é adicionado ao contexto de
setas ∆ pela função addArrowType, em um contexto diferente das variáveis
derivadas de abstrações-λ ordinárias. Prosseguindo na função principal, o tipo
de t2 é removido e são iniciadas as verificações se os tipos derivados de t1 e t2
são erros ou não são do tipo TypeComm.

6 Conclusão

Foi apresentado nesse trabalho o desenvolvimento de um interpretador e verifica-
dor de tipos para o cálculo-λ quântico com utilização de mônadas e setas.

Apesar de ser possível realizar e entender vários aspectos da computação
quântica utilizando o interpretador e o verificador de tipos, os mesmos não estão
completos. Até o momento, não é possível realizar operações de medida que
utilizam estados quânticos mistos, embora tenham sido representados alguns
termos e tipos que definem o cálculo com setas.

Para etapas futuras do trabalho, estão previstos a inclusão de termos e tipos
para manipular a medida e também a definição de um sistema de tipos para
controlar operações quânticas reversíveis.

J. Pires, E. Piveta, J. Vizzotto 163

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



10 José Carlos Puiati Pires, Eduardo Kessler Piveta e Juliana Kaizer Vizzotto

Referências

1. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theo-
rem. Indagationes Mathematicae (Proceedings) 75(5), 381 – 392 (1972), http:
//www.sciencedirect.com/science/article/pii/1385725872900340

2. Capretta, V., McBride, C., Lindley, S., Wadler, P., Yallop, J.: Proceedings of the
second workshop on mathematically structured functional programming (msfp 2008)
idioms are oblivious, arrows are meticulous, monads are promiscuous. Electronic
Notes in Theoretical Computer Science 229(5), 97 – 117 (2011), http://www.
sciencedirect.com/science/article/pii/S1571066111000557

3. Church, A.: An unsolvable problem of elementary number theory. American Journal
of Mathematics 58(2), 345–363 (1936)

4. Dirac, P.: The Principles of Quantum Mechanic. Clarendon Press; 3rd edition (April
1947)

5. Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37,
67–111 (May 2000)

6. Hughes, J.: Programming with Arrows, pp. 73–129. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005), http://dx.doi.org/10.1007/11546382_2

7. Lindley, S., Wadler, P., Yallop, J.: The arrow calculus. Journal of Functional
Programming pp. 51–69 (2010)

8. Moggi, E.: An abstract view of programming languages. Edinburgh University
(1989)

9. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of LICS-
1989. pp. 14–23. IEEE Computer Society (1989)

10. Mu, S.C., Bird, R.: Functional quantum programming. In: Asian Workshop on
Programming Languages and Systems. KAIST, Dajeaon, Korea (dec 2001), http:
//www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf

11. Selinger, P.: Towards a quantum programming language. Mathematical. Struc-
tures in Comp. Sci. 14(4), 527–586 (Aug 2004), http://dx.doi.org/10.1017/
S0960129504004256

12. Selinger, P., Valiron, B.: A Lambda Calculus for Quantum Computation with
Classical Control, pp. 354–368. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005), http://dx.doi.org/10.1007/11417170_26

13. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.)
Semantic Techniques in Quantum Computation. pp. 135–172. Cambridge Univ.
Press (2009)

14. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: superopera-
tors as arrows. CoRR abs/quant-ph/0501151 (2005), http://dblp.uni-trier.de/db/
journals/corr/corr0501.html#abs-quant-ph-0501151

15. Vizzotto, J.K., Calegaro, B.C., Piveta, E.K.: A double effect lambda-calculus for
quantum computation. In: Proceedings of SBLP-2013. LNCS, vol. 8129, pp. 61–74
(2013)

16. Vizzotto, J.K., Du Bois, A.R., Sabry, A.: The Arrow Calculus as a Quantum Pro-
gramming Language, pp. 379–393. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-02261-6_30

164 Interpretador e Verificador de Tipos para o Cálculo-λ Quântico com Mônadas e Setas

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Formalization of the Undecidability of the
Halting Problem for a Turing Complete

Functional Language

Thiago Mendonça Ferreira Ramos and Mauricio Ayala-Rincón?

Universidade de Braśılia, Braśılia, DF , Brazil,
thiagomendoncaferreiraramos@yahoo.com.br, ayala@unb.br

Abstract. Checking whether a program is or not terminating is unde-
cidable. Despite this, there exist several techniques to check termination
of specifications and programs, that are of great relevance for the au-
tomation of termination in proof assistants and for the improvement of
the compilers of future programming languages. The minimal first-order
functional language PVS0 with its operational semantics is part of the
developments PVS0 and CCG, formalized in the proof assistant PVS.
These developments included the specification of notions of semantic
termination and Turing’s ranking function termination as well as two
size change termination based technologies: calling context graphs and
matrix weighted graphs. The developments include formalizations that
these four technologies for checking termination are equivalent. In this
paper we present a PVS formalization of the Turing completeness for the
PVS0 language as well as a direct formalization of the undecidability of
the halting problem for this language.

1 Introduction

Checking termination of programs is fundamental in computer science because
the correctness of procedures depends on termination of processes. An example
is the problem of threads termination of keyboard drivers in operational systems
[2]. If after pressing a key a thread does not stop, the keyboard control is lost.
Determining whether a program stops is an undecidable problem that is related
with the halting problem [7] and, therefore it is not possible to construct a
compiler that for all possible inputs (programs) verifies termination.

Despite this, it is possible to construct semi-decision algorithms that, given a
program, can correctly answer “stops” or “unknown”. In order to do this, several
approaches have been developed which use equivalent notions of termination.
The most updated progress in this area is regularly reported in the Annual
International Workshop on Termination and Termination Competition1.

For each different definition of termination, techniques to check termination
might be developed [3]. Among these techniques, we emphasize these based on

? Authors respectively supported by CNPq MSc shoolarship and research grant.
1 http://www.termination-portal.org

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



the size-change termination principle [5] such as Calling Context Graphs [6]
and Matrix Weighted Graphs [1], that are used for functional specifications, and
these based on the construction of reduction and simplification orderings for
term rewriting systems as well as Dependency Pairs in [4] . All these techniques
are related with each other since term rewriting is the formal framework for
reasoning about functional programming.

PVS0 and CCG are PVS developments available in the NASA LaRC PVS
library (at https://github.com/nasa/pvslib), including more than 400 lem-
mas, that were formalized by members of the NASA LaRC formal methods and
our group of Theory of Computation in Braśılia. In these developments the min-
imal functional language PVS0 is specified. PVS0 is called “minimal” because it
contains just the necessary grammatical elements to be Turing complete. PVS0
and CCG include the formalization of notions such as semantic evaluation and
the notion of semantic termination for programs written in PVS0. Additionally,
they include formalizations of other notions of termination such as Turing’s rank-
ing functions, as well as matrix weighted graph and calling context graph. The
main formalizations in these developments are related with theorems of equiva-
lence between these different termination technologies. This is of great relevance
for increasing the power of automation of proof assistants such as PVS providing
different semantics of termination as well as the associated mechanisms to guide
the construction of inductive proof schemas based on these technologies.

In this work we will only use the notions of semantic termination and ranking
function termination. Ranking function termination corresponds to the seman-
tics of termination in PVS that is implemented through a static analysis of
recursive functions in which, according to a measure function on the parame-
ters, termination “Type Correctness Conditions” (termination TCCs for short)
are built that express decreasement of the parameters after each recursive call.

The main contributions of this work are:

– a formalization of the Turing completeness of the PVS0 language.
– a direct formalization of the undecidability of the halting problem for PVS0.

The former implies that PVS0 has the necessary expressiveness for computing
all “computable” functions (i.e., partial recursive functions). The latter means
that there exists no PVS0 program that having as input the encoding of a PVS0

program decides whether that program halts for all possible inputs. Indeed, the
former gives as corollary the second, but the formalization of the undecidability
of the halting problem is developed explicitly.

2 Definitions of Semantic and TCC Termination

The grammar of the language PVS0 is given as:

Expr ::= rec(Expr)|op1(Expr)|op2(Expr, Expr)|ite(Expr, Expr, Expr)|vr|cnst
Above, rec is the symbol for recursion, op1 and op2 are symbols for unary

and binary operators, ite is the symbol for the branching operator (IF THEN
ELSE), and vr and cnst for variable and constant.

166 Formalization of the Undecidability of the Halting Problem for a Turing Complete Functional Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



We assume non-empty disjoint sets for the constant symbols CONST , vari-
ables V R, binary operators OP2 and unary operators OP1. The set Val is the
set of inputs as well as outputs of the language. The semantic evaluation is given
from an interpretation of constant, variable, unary and binary operator symbols,
through the mapping:

I : (CONST → Val) ∪ (OP1→ Val→ Val) ∪ (OP2→ (Val × Val)→ Val) :

– If c ∈ CONST , then cI ∈ Val is the value mapped from c.
– If g ∈ OP1, then gI ∈ Val→ Val is the unary function mapped from g.
– If h ∈ OP2, then hI ∈ (Val × Val) → Val is the binary function mapped

from h.

The semantic evaluation of an expression is given by the relation ε : Expr ×
Expr× Val × Val→ bool :

ε(e, ef , β, ν) := CASES e OF

cnst : ν = cnstI;
vr : ν = β;

op1(e1) : ∃ν1 ∈ Val : ε(e1, ef , β, ν1)∧
ν = op1I(ν1);

op2(e1, e2) : ∃ν1, ν2 ∈ Val : ε(e1, ef , β, ν1) ∧ ε(e2, ef , β, ν2)∧
ν = op2I(ν1, ν2);

ite(e1, e2, e3) : ∃ν1 : ε(e1, ef , β, ν1)∧
IF ν1 THEN ε(e2, ef , β, ν) ELSE ε(e3, ef , β, ν);

rec(e1) : ∃β′ ∈ Val : ε(e1, ef , β, β
′)∧

ε(ef , ef , β
′, ν)

Where op1I and op2I are total functions.
Semantic evaluation performs using lazy evaluation, that is, expressions are

evaluated only if necessary. The relation ε(e, ef , β, ν) means that the evalua-
tion of the expression e regarding the recursive expression ef and with input β
produces as output ν. But if the recursion does not stop, the predicate is false.

The predicate for semantic termination of the expression Tε : Exp→ bool is
defined as follows:

Tε(ef ) := ∀ β, ∃ ν ∈ Val : ε(ef , ef , β, ν)

It expresses that for all inputs the expression ef must produce an output in
order to be considered terminating.

As an example consider the greatest common divisor. Initially, suppose that
the following functions are implemented:

ZI
ero(m,n) := m = 0 ∨ n = 0 SI

um(m,n) := (m+ n, 0)

GI
eq(m,n) := n ≥ m SI

ub(m,n) := (m,n−m)

P I
er(m,n) := (n,m)

T. Ramos, M. Ayala-Rincón 167

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Then, the function gcd : N× N→ N× N, can be specified in PVS0 as below:

gcd := ite(Zero(vr), Sum(vr), ite(Geq(vr), rec(Sub(vr)), rec(Per(vr))))

Where the answer is given as the first element of the output tuple. Above, if
one element of the tuple is equal to zero, gcd is the sum of the elements. If the
second one greater than or equal to the first one, gcd is recursively called with
the first element and the second minus the first one. Otherwise gcd is recursively
called with the swapped tuple.

Another definition for termination checks that there exists a kind of “decre-
ment” by a well-founded relation between the parameters of the function (the
formal parameters) and the corresponding arguments of the recursive calls (the
actual parameters), assuming that the conditions to execute the recursive call
hold. This notion is adopted as the semantics of termination in several proof
assistants and is known as the ranking function technique ([8]) and it is formal-
ized to be equivalent to the previous given notion of termination. This notion is
implemented in PVS through the construction of the so called termination TCCs
(Type Correctness Conditions) that uses a measure function and a well-founded
relation provided by the specifier. Essentially, it is required that the measure
of the formal parameters be greater than the measure of the actual parameters
of all possible recursive calls. For instance gcd above, might use the measure
function lex2((m,n)) := ωm+n, and apply the ordering (>) over ordinals. This
corresponds to the lexicographic ordering over pairs of naturals. Since this is a
well-founded order, it is easy to check that the required decreasement conditions
over parameters and actuals of the recursive calls hold, that is:

• if n ≥ m, then lex2((m,n)) > lex2((m,n−m))
• if n < m, then lex2((m,n)) > lex2((n,m))

Expressions are represented by their syntactic trees. This is used to define
how to determine the subexpression given by a path in the execution tree, which
paths are valid and stock the boolean expressions that execute a recursive call.
Paths are sequences of naturals ([N]) that represent subexpressions, when read-
ing them backwards. Paths might be extended putting naturals in front of the
sequences. Below, [T ] means a list of type T . The examples of paths in the ex-
pression Per(gcd) are [1, 0], [0, 1, 0] and [0, 0, 2, 2, 0] that are highlighted below.

Per
0��

ite

0xx 1��
2

&&
Zero

0
��

Sum
0
��

ite

0�� 1 %%
2

**
vr vr Geq

0
��

rec

0��

rec

0��
vr Sub

0��

Per
0��

vr vr

168 Formalization of the Undecidability of the Halting Problem for a Turing Complete Functional Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



It is possible to build the chain of conditions in an execution path. A data
structure is needed to store whether the condition corresponds to the THEN or
ELSE branch of a branching instruction in the execution path. To that effect,
one may use the following abstract data structure which type is Exprbool:

exprbool : Expr→ Exprbool exprnot : Expr→ Exprbool.
If the extraction of subexpression is from THEN, then the condition is stored

using exprbool, otherwise, it is stored by exprnot.
A function that extracts the chain of path conditions in recursive definitions

was specified, here denoted as Π. These are examples of extracted path condi-
tions for the expression Per(gcd):

– Π(Per(gcd), [1, 0]) = [exprbool(Zzero(vr))]
– Π(Per(gcd), [0, 1, 0]) = [exprbool(Zzero(vr))]
– Π(Per(gcd), [2, 2, 0]) = [exprnot(Geq(vr)), exprnot(Zzero(vr))]

Calling contexts are registers that contain information about a recursive call
in an expression e and that consist of the expression of the recursive call itself,
the path conditions and the execution path until the recursive call.

Let cc := 〈rec expr : {a : Expr|a = rec(b)}, cnds : [Exprbool], path : [N]〉 be a
calling context of the expression e. It is a valid calling context of e if rec expr
is the subexpression of e in path and cnds are the related path conditions. The
predicate V alid cc : Expr → Expr cc → bool expresses this. V alid cc(e)(cc) or
cc : V alid cc(e) express that cc is a valid calling context for the expression e.

Above, the access of the elements of the data structure is given by the prim-
itives: rec expr to the recursion, cnds to the list of conditions and path to the
valid path until the recursive call.

In order to evaluate the path conditions, one applies the function EC : Expr×
[Exprbool]×Val→ bool, where EC(e, cnds, β) evaluates the conditions cnds with
β as an input argument considering the expression e as the recursive function.

EC(e, cnds, β) := CASES cnds OF

[ ] : true;
[a : l] : (CASES a OF

exprbool(c) : ε(c, e, β, ν) ∧ ν;
exprnot(c) : ε(c, e, β, ν) ∧ NOT ν) ∧ EC(e, l, β)

To evaluate termination by ranking function, it is necessary to define a mea-
sure mapping µ : Val →MT where MT is a metric space with a well-founded
order ≺. Well foundedness is specified as usual: ∀ P : MT → bool : ((∃ e :
P ) ⇒ ∃ (m : P ), ∀(a : P ) : ¬(a ≺ m)). Thus, the definition of termination by
TCC of an expression ef is specified as:

Tζ(ef ) := ∃ µ, ∀ (β, cc : V alid cc(ef ), ν) :
ε(get arg(rec expr(cc)), ef , β, ν) ∧ EC(ef , cnds(cc), β)⇒ µ(ν) ≺ µ(β)

Above, get arg get the argument of the recursive expression. In PVS, the
termination above is called TCC termination. PVS builds TCC termination (and
type) obligations that should be proved in order to guarantee well-definedness
of the specified functions.

T. Ramos, M. Ayala-Rincón 169

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



3 Undecidability of the Halting Problem for PVS0

The equivalence between semantic termination and TCC termination was for-
malized in the PVS0 development: ∀ef : Expr Tε(ef ) ≡ Tζ(ef ). The undecid-
ability of the halting problem (next lemma) is formalized using these notions of
termination over PVS0 and the technique of diagonalization of Cantor.

Lemma 1 (Undecidability of the Halting Problem for PVS0). If there is
a surjective function from Val to expressions of PVS0, then there is no func-
tion “halt” that verifies whether an expression is terminating according to the
predicate of semantic termination:

∃ (Val2Expr : Val→ Expr) : ∀(expr : Expr) : ∃(ν : Val) : Val2Expr(ν) = expr

⇒ ¬∃ (halt : Expr→ bool) : ∀ ef : halt(ef )⇔ Tε(ef )

The existence of a surjective mapping from the values to the PVS0 expressions
is a natural assumption that will hold whenever the non interpreted type Val is
an infinite enumerable set. The formalization proceeds as explained below.

Proof. (formalization sketch) Suppose: ∃ (Val2Expr : Val → Expr) : ∀(expr :
Expr) : ∃(ν : Val) : to Expr(ν) = expr. To obtain a contradition, suppose that:

∃ (halt : Expr→ bool) : ∀ ef : halt(ef )⇔ Tε(ef )

Thus, there exists a function halt with such a property. The expression ef will
be chosen as m := ite(H(vr), rec(vr), vr). Therefore, it results in the following
assertion: halt(m)⇔ Tε(m).

Now, both cases halt(m) and ¬halt(m) are analysed.
Case halt(m). If ∀ ef : halt(ef ) ⇔ Tε(ef ) holds for an expression ef , it also
holds for an expression ite(H(vr), rec(vr), vr), where HI := halt◦Val2Expr (the
symbol ◦ denotes function composition). In this case,m = ite(H(vr), rec(vr), vr).

It results in the assertive (halt(m) ⇒ Tε(m)) ∧ (Tε(m) ⇒ halt(m)). By the
definition of Tε, thus, ∀β,∃ν : ε(m,m, β, ν).

Choosing β := M0, where Val2Expr(M0) = m (the value M0 exists since
Val2Expr is surjective), ε(m,m, β, ν) goes to an infinite process for each value ν
and, therefore, the value ν does not exists, which is a contradiction.

However, the proof assistant PVS does not allow this kind of proof because of
infinite process of ε. In this case, it was applied the equivalence Tε(m) ≡ Tζ(m).
Therefore, Tζ(m) was used:

∃ µ, ∀ (β, cc : V alid cc(m), ν) :
ε(get arg(rec expr(cc)),m, β, ν) ∧ EC(m, cnds(cc), β)⇒ µ(ν) ≺ µ(β)

Thus, there exists µ such that :

∀ (β, cc : V alid cc(m), ν) :
ε(get arg(rec expr(cc)),m, β, ν) ∧ EC(m, cnds(cc), β)⇒ µ(ν) ≺ µ(β)

170 Formalization of the Undecidability of the Halting Problem for a Turing Complete Functional Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



Here, β := M0 is chosen with, cc := 〈rec expr := rec(vr), cdns := [H(vr)],
path := [1]〉 and ν := M0.

Simplifying the definitions ε and EC : HI(M0) ⇒ µ(M0) ≺ µ(M0). There-
fore: halt(m)⇒ µ(M0) ≺ µ(M0). Finally, by the assumption of halt(m): µ(M0) ≺
µ(M0), that is a contradition, because the relation ≺ is well-founded.
Case ¬halt(m). One has that ¬Tε(m) holds. By expanding the definition of
Tε: ¬∀ β, ∃ ν ∈ Val : ε(m,m, β, ν), which is equivalent to: ∃ β, ∀ ν ∈ Val :
¬ε(m,m, β, ν). Thus, there exists β, such that: ∀ ν ∈ Val : ¬ε(m,m, β, ν). Ex-
panding the definition of ε and considering ¬halt(m): ∀ ν ∈ Val : ¬ε(vr,m, β, ν).

To conclude, a value ν different of β is chosen, which generates a contradic-
tion. �

4 Formalization of the Turing completeness of PVS0

Since undecidability of the halting problem for restricted and non expressive
computational models is irrelevant, it is also necessary to prove that PVS0 is
a Turing-complete language. The reader could argue that Turing completeness
implies undecidability of the halting problem, but our intention was to prove in
an explicit manner that this theorem holds for the PVS0 language.

To formalize Turing completeness it is proved that PVS0 encodes the basic
recursive functions: zero, successor and projections as well as addition, multipli-
cation and the function χ (that is, χ(x, y) = 1 if x ≤ y else 0), and in addition
that it is closed under the operations of composition and minimization.

Lemma 2 (Turing Completeness of PVS0). If there is a surjective function
that encodes each PVS0 expression as a value in Val and, there is a codification of
Val using natural numbers through a bijective function, then the language PVS0

computes all partial recursive functions:

∃ (Val2Expr : Val→ Expr) : ∀(expr : Expr) : ∃(ν : Val) : Val2Expr(ν) = expr
∧ ∃ (Val2Nat : Val→ N) : Val2Nat is bijective

⇒ PVS0 is Turing-Complete

Proof. If there exist a bijective function Val2Nat : Val→ N, then it is possible to
encode successor, addition and multiplication. Considering Val2Nat the bijection
between Val and N and Nat2Val the inverse function. The symbols S, P and M
implement successor, addition and multiplication respectively:

– SI(v) = Nat2Val(Val2Nat(v) + 1)
– P I(v1, v2) = Nat2Val(Val2Nat(v1) + Val2Nat(v2))
– MI(v1, v2) = Nat2Val(Val2Nat(v1)×Val2Nat(v2))

There is a bijective function between N and non empty lists of N. Thus, there
exists a bijective function between Val and non empty lists of N. Let call this
function to List and consider rem(a, b) as the remainder of a and b; nth(l, i)
as the ith element of the list l (starting from 0 until the length l minus one)

T. Ramos, M. Ayala-Rincón 171

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



in a list l; and length as the number of elements in a list, the projection Pi is
implemented as:

P I
i (a, b) = nth(to List(a), rem(length(to List(a)),Val2Nat(b)))

The function χ is built as:

CI
hi(a, b) = if Val2Nat(a) ≤ Val2Nat(b) then Nat2Val(1) else Nat2Val(0)

For the composition, consider Val2Expr : Val→ Expr as a surjective function
and the function Expr2Val : Expr→ Val given as:

Expr2Val(e) = CHOOSE({v : Val|Val2Expr(v) = e})
where CHOOSE is a function that chooses a value from a non empty set. Consider
also the PVS functions (PVS0 operators):

– OI(a, b) = CHOOSE({v : Val|IF ∃ t : ε(Val2Expr(a),Val2Expr(a), b, t) THEN
ε(Val2Expr(a),Val2Expr(a), b, v) ELSE v = Nat2Val(0)})

– OI
aux(a, b) = CHOOSE({v : Val|IF ∃ t : ε(Val2Expr(a),Val2Expr(a), b, t) THEN

v = Nat2Val(1) ELSE v = Nat2Val(0)})
Thus, composition is built as:

Comp(f, g) := ite(Oaux(Expr2Val(g), vr),
ite(Oaux(Expr2Val(f), O(Expr2Val(g), vr)),
O(Expr2Val(f), O(Expr2Val(g), vr)), rec(vr)), rec(vr))

The branching instruction ite considers Nat2Val(0) as false and any other dif-
ferent value as true.

The unary operator min (in OP1) is specified in PVS as the predicate min :
[Expr× Val × Val]→ Bool, that specifies minimization for an expression e:

min(〈e, t, v〉) := IF ε(e, e, t,Nat2Val(0)) THEN t = v
ELSE min(〈e,Nat2Val(Val2Nat(t) + 1), v〉)

In addition, using min, a PVS predicate Maux and an operator Min are
specified for verifying the existence and verifying and giving the minimum:

– MI
aux(a, b) = CHOOSE({v : Val|IF ∃ t min(〈Val2Expr(a), b, t〉) THEN

v = Nat2Val(1) ELSE v = Nat2Val(0)})
– MI

in(a, b) = CHOOSE({v : Val|IF ∃ t min(〈Val2Expr(a), b, t〉) THEN
min(〈Val2Expr(a), b, v〉) ELSE v = Nat2Val(0)})
Finally, minimization of PVS0 functions is implemented in PVS0 as:

MIN(f) := ite(Maux(Expr2Val(f), vr),Min(Expr2Val(f), vr), rec(vr))

To prove that MIN minimizes indeed, it is necessary to prove that the
predicate min holds for values v such that the evaluation of the expression e with
input v results in Nat2Val(0): ∀(e, t, v) : min(〈e, t, v〉)⇒ ε(e, e, v,Nat2Val(0)).

One proceeds by induction on min’s structure. It means one considers that
the property holds for the recursion to show that holds for the min procedure.

172 Formalization of the Undecidability of the Halting Problem for a Turing Complete Functional Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



– Case ε(e, e, t,Nat2Val(0)) then t = v. Thus ε(e, e, v,Nat2Val(0)).
– Case ¬ε(e, e, t,Nat2Val(0)) then min(〈e,Nat2Val(Val2Nat(t) + 1), v〉). By

hypothesis of induction, ε(e, e, v,Nat2Val(0)).

To formalize that the predicate min indeed minimizes, it is required to
prove the following property, that states that min holds for a minimum value v:
∀(e, t, v) : min(〈e, t, v〉)⇒ ∀h : Val2Nat(t) ≤ Val2Nat(h) < Val2Nat(v)⇒

¬ε(e, e, h,Nat2Val(0))
The proof is also by induction on min’s structure.

– Case ε(e, e, t,Nat2Val(0)) then t = v. Thus ∀h : Val2Nat(v) ≤ Val2Nat(h) <
Val2Nat(v)⇒ ¬ε(e, e, h,Nat2Val(0)). The assertion Val2Nat(v) ≤ Val2Nat(h)
< Val2Nat(v) is false, so it is true that ∀h : Val2Nat(v) ≤ Val2Nat(h) <
Val2Nat(v)⇒ ¬ε(e, e, h,Nat2Val(0)).

– Case ¬ε(e, e, t,Nat2Val(0)) then min(〈e,Nat2Val(Val2Nat(t) + 1), v〉). By
hypothesis of induction,
∀h : Val2Nat(t) + 1 ≤ Val2Nat(h) < Val2Nat(v)⇒ ¬ε(e, e, h,Nat2Val(0)). If
t = h, then ¬ε(e, e, h,Nat2Val(0)) holds. Then, ∀h : Val2Nat(t) ≤ Val2Nat(h)
< to Nat(v)⇒ ¬ε(e, e, h,Nat2Val(0)). �

5 Conclusion and Future Work

A formalization of the undecidability of the Halting Problem for a minimal func-
tional language PVS0, that has also been formally proved to be Turing complete,
was presented. In the formalization of undecidability, the equivalence between
termination TCCs (Turing’s ranking function) and semantic termination notions
was crucial to guarantee proof convergence (avoiding expanding the definition
of ε indefinitely) when trying to find a value that does not exists in PVS0, and
the program executes with itself as input. In this manner the required contra-
diction can be effectively obtained. Also, the assumption that there exists a
surjective mapping from the non interpreted type T and PVS0 expressions (pro-
grams) built over this type was important to guarantee the Gödelization of the
PVS0 programs. In addition, The cardinality of the non interpreted type T must
be at least ω (the cardinality of naturals). For the proof of Turing completeness,
the cardinality of T should be ω as well because this proof works with recursive
functions and consequently with naturals.

Future work includes extending the restricted syntax of PVS0. Among other
drawbacks, this language allows only specification of (recursive) functions with
only one parameter over a non interpreted type T, being the output a value of the
same type. This simplifies the specification and formalization of mechanisms for
checking termination of programs and related properties such as equivalence be-
tween different technologies for automating termination, but in practice, such as
in the PVS specification language, one uses more elaborated expressions in which
operators give outputs of arbitrary types and deal with tuples of parameters of
different types. Thus, the desired extension should allow additional flexibilities

T. Ramos, M. Ayala-Rincón 173

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4



such as manipulation of tuples of parameters of different types, other branch-
ing instructions such as CASE OF instructions, assigning instructions such as
LET IN, etc. The extended language will facilitate the translation from real pro-
gramming languages and consideration of other computational properties such
as those related with complexity. Thus, the programs specified in the extended
language as well as adaptations of the technologies for the automation of termi-
nation will be translated into the setting of the PVS0 language in a conservative
manner, and in this way, all properties proved for PVS0 would be inherited for
the extended language.

6 Acknowledgments

We would like to thank Cesar Muñoz and Mariano Moscato for meaningful
contributions on this work. To both them for the development of the kernel of the
language PVS0 and to the former for pointing out the importance of formalizing
Turing completeness of PVS0.

References

1. Andréia B. Avelar. Formalização da automação da terminação através de grafos
com matrizes de medida. PhD thesis, Universidade de Braśılia, Departamento de
Matemática, Braśılia, Distrito Federal, Brasil, 2015.

2. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving thread termi-
nation. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, pages 320–330, 2007.

3. Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. Lexicographic Termina-
tion Proving. In Proceedings Tools and Algorithms for the Construction and Analysis
of Systems - 19th International Conference, joint TACAS ETAPS, volume 7795 of
Springer LNCS, pages 47–61, 2013.

4. Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency pair
framework: Combining techniques for automated termination proofs. In Proceedings
Logic for Programming, Artificial Intelligence, and Reasoning LPAR, volume 3452
of Springer LNCS, pages 301–331, 2004.

5. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change prin-
ciple for program termination. In Conference Record of POPL 2001: 28th ACM
SIGPLAN-SIGACT Symp. on Princ. of Programming Lang., pages 81–92, 2001.

6. Panagiotis Manolios and Daron Vroon. Termination analysis with calling context
graphs. In Proceedings Computer Aided Verification CAV 2006, Seattle, WA, USA,
August 17-20, 2006, Proc., volume 4144 of Springer LNCS, pages 401–414, 2006.

7. Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. of the London Mathematical Society, 42(1):230–265, 1937.

8. Alan M. Turing. Checking a large routine. In Martin Campbell-Kelly, editor, The
Early British Computer Conferences, pages 70–72. MIT Press, Cambridge, MA,
USA, 1989.

174 Formalization of the Undecidability of the Halting Problem for a Turing Complete Functional Language

ETMF 2016 • 22–23 de novembro de 2016 • ISBN 978-85-7669-357-4


